
Design and Implementation of Distributed Task Sequencing on GridRPC

Yusuke Tanimura, Hidemoto Nakada, Yoshio Tanaka, and Satoshi Sekiguchi
National Institute of Advanced Industrial Science and Technology

{yusuke.tanimura, hide-nakada, yoshio.tanaka, s.sekiguchi}@aist.go.jp

Abstract

In the framework of GridRPC, a new function that allows
direct data transfer between RPC servers is implemented
for efficient execution of a Task Sequencing job in a grid en-
vironment. In Task Sequencing, RPC requires dependency
between input and output parameters, which means output
of a previous RPC becomes the input of the next RPC. In
this study, the direct transfer of data is implemented us-
ing the grid filesystem without destroying the GridRPC pro-
gramming model and without changing very many parts of
the existing Ninf-G implementation. Our Task Sequencing
API library analyzes RPC arguments to detect intermedi-
ate data after task submissions, and reports the information
to GridRPC servers so that the intermediate data is created
on the grid filesystem. Through our performance evaluation
on LAN and on the Japan-US grid environment, it was veri-
fied that the function achieved performance improvement in
distributed Task Sequencing.

1. Introduction

GridRPC[1] is an RPC mechanism tailored for the Grid.
The GridRPC offers an attractive programming model of
standard RPC plus asynchronous, coarse-grained parallel
tasking, while hiding the dynamic, insecure, and unstable
aspects of the Grid and software complexities. There are
several practical case studies of GridRPC, with scientific
applications[2, 3]. In these studies, the performance and
stability are analyzed if the GridRPC system meets the re-
quirements of the applications to produce scientific discov-
eries. Applications reported in these studies are task par-
allel applications which could be implemented by a simple
framework of the client-server model, i.e. multiple inde-
pendent tasks were processed on distributed computing re-
sources. However, the other types of applications whose
tasks have dependency, such as workflow-type execution,
are considered attractive applications for the Grid[4].

Task Sequencing function over the GridRPC is expected
by applications, however there is a conflict with simple

programming of GridRPC, since the client-server style
does not suppose inter-server communications. Existing
GridRPC implementations, such as Ninf-G[5], NetSolve[6]
and OmniRPC[7], provide a functionality of Task Sequenc-
ing as an extension outside of GridRPC. Since the imple-
mentations of these systems use memory or files for storing
intermediate data which would be accessed by more than
two tasks, these tasks must be processed on the same node
or nodes which share the filesystem. Direct data transmis-
sion between servers, which is required by the distributed
Task Sequencing, are not allowed in most GridRPC imple-
mentations. One possible way is to transfer data through
the client, i.e. the data is transferred from one server to the
client, then the data is sent from the client to another server.
This causes serious performance degradation, in particular
in transferring large data of practical applications.

The goal of this study is to achieve efficient implemen-
tation of Task Sequencing over distributed computing re-
sources, by developing a function for direct data transmis-
sion between servers, without destroying the client-server
model as the GridRPC basics. In addition, the paper
presents the Task Sequencing API and performance evalu-
ation of the overall implementation of the Task Sequencing
function to show the practicality.

Our approach is to implement direct data transfer by
combining the GridRPC system and the Grid filesystem.
Keeping the simple client-server style programming for
users, this approach does not require changing many parts
of the existing GridRPC systems. In this paper, Gfarm[8] is
used as the Grid filesystem and Ninf-G is as the GridRPC
system. First, we enhanced Ninf-G so that users specify a
file on the Gfarm filesystem as a GridRPC argument. Then,
we implemented the Task Sequencing API library over the
Ninf-G. The library analyzes a Task Sequencing job inside
the library itself, checks all file type arguments, and creates
an intermediate file on the Gfarm filesystem.

2. Related work

There are several studies concerned with efficient execu-
tion of Task Sequencing. Ninf[9] and NetSolve, which are

Module sample
Define func1(IN filename input, OUT filename result)
Required "sample.o"
Calls "C" func1(input, result);

Figure 1. A sample IDL
void func1(char *input, char *result){

FILE fp1, fp2;
fp1 = fopen(input, "r");
fp2 = fopen(result, "w");

/* Do work */
fclose(fp1);
fclose(fp2); }

Figure 2. An example of a remote program

primarily GridRPC systems, implement an API to explic-
itly store a data array on a storage server. For example, the
DSI (Distributed Storage Infrastructure)[10] of NetSolve al-
lows the client to save a data array on a storage server using
ns dsi write matrix(), in advance. This function returns a
DSI object. When the object is specified as an RPC argu-
ment, the data array on the storage server will be directly
transmitted to the host where the RPC is assigned. The DSI
is built on top of the IBP (Internet Backplane Protocol)[11].

NetSolve provides the Request Sequence API[12], too.
RPC requests can be written between the begin function and
the end function of the Request Sequence. Pointers to the
data to be returned to the client node should be passed to
the end function. NetSolve analyzes the input/output mode
of each RPC argument inside of the client library. Thus,
arguments are not transmitted to the client in vain.

Ninf-G and OmniRPC support the remote-object mech-
anism. Once a remote program is launched as an object,
the program holds data on the memory or disk of the re-
mote node. This allows the RPC to access the data used
in the previous RPC. The remote-object is useful because
sharable data is not sent back to the client needlessly.

DIET[13] proposes the Data Management API to treat
data persistency on remote servers. In creating a data han-
dle, users can set a parameter to specify the case: the data is
left on the server, the data should be sent back to the client,
or the data is movable to other servers. The DIET system
implements Data Tree Manager (DTM), which supports di-
rect data transmission between servers.

Our study follows the APIs discussed in the above
studies and implements direct data transmission between
servers. The difference from the DIET approach is that we
use a Grid filesystem in the data transmission layer. Our
approach makes the implementation simpler, and provides
functionality for data replication in case of a fault.

3. Extension of the file transmission in Ninf-G

Ninf-G implements the file transmission with GASS[14]
of Globus, and a file location (including the host name and
the path) is reported by the client to the remote program.

[Original description]
grpc_function_handle_init(&handle, "func1", "host1");
grpc_call(&handle, "exp1/input.dat", "result.dat");

[Extended description to specify a file on the Gfarm
filesystem]

grpc_function_handle_init(&handle, "func1", "host1");
grpc_call(&handle,

"GFS:LTMP:GFILE:exp1/input.dat","result.dat");

Figure 3. Sample client code

This implementation assumes that the file is either on the
client or on the server. If a grid filesystem is available, how-
ever, it will be acceptable to pass a universal file path to
the remote program. For example, the file “test.dat” can
be accessed by the path “gfarm:test.dat” from anywhere on
the Gfarm environment, and the path is independent of the
storage host. This allows us to not change current Ninf-G
implementation very much to support direct transmission.
Therefore, the present study uses Gfarm version 1.3 as a
grid filesystem, and modified the file transmission code of
Ninf-G so that the Gfarm file path is passed to Ninf-G as an
RPC argument. In addition, our implementation allows the
client to set a temporary directory on the Gfarm filesystem.

3.1. Design of the extension

Our approach is to implement a transmission function
for the file stored on the Gfarm filesystem, by modifying
the Ninf-G implementation as little as possible. In the con-
ventional Ninf-G, the transmission of the file type argument
is described as in Figures 1, 2 and 3. Figure 1 is an IDL
(Interface Definition Language) file for the server program
in Figure 2. [Original description] in Figure 3 is client code
to invoke an RPC. A file transferred from the client to the
compute node, is stored in the directory which is specified
in the configuration file on the server. The file is named by
the system and treated as a temporary file. The file name is
passed to the remote function as a string argument.

In the extension using Gfarm, a Gfarm file path can be
set in the GridRPC argument of the calling functions. The
argument type in IDL is still a file type (filename), which
does not require users to modify the remote program. The
Ninf-G protocol is also the same as those of Ninf-G version
2.3 and 2.4 for compatibility.

The temporary file on the compute node is deleted after
the RPC, if the remote program is not launched as a remote
object. This rule is applied to the extension. An output file
on the Gfarm filesystem should be taken care of by higher
layers of the Ninf-G, such as the applications or the Task
Sequencing library.

The file cache is handled by Gfarm. When a remote pro-
gram reads a file on the Gfarm filesystem, the file is repli-
cated on the local node. The local node must be a storage
node of Gfarm in this case. Once one of replicas is updated,
Gfarm automatically deletes the rest.

Table 1. File transfer patterns
No. Input Temporary Output Implementation
1 – Local – No transfer
2 – Local Local Implemented
3 – Local GFS Case 2
4 Local Local – Implemented
5 Local Local Local Implemented
6 Local Local GFS Case 2
7 GFS Local – Case 1
8 GFS Local Local Case 1
9 GFS Local GFS Case 1, 2
10 – GFS – No transfer
11 – GFS Local Case 4
12 – GFS GFS Case 6
13 Local GFS – Case 3
14 Local GFS Local Case 3, 4
15 Local GFS GFS Case 3, 5
16 GFS GFS – Case 5
17 GFS GFS Local Case 4, 5
18 GFS GFS GFS Case 5, 6

The extension is implemented in the remote-side library
of Ninf-G. Therefore, the client library and system call hook
library of Gfarm should be installed on the compute node,
in order to link the Ninf-G remote executable with them.

3.2. Implementation

Table 1 shows patterns of file transmission, including
conventional patterns and transmission with Gfarm. The
patterns are categorized by the input, the temporary file on
the remote, and the output. When the following 6 use cases
are newly implemented, all of the transmission patterns are
realized. In this paper, it is defined that a GFS file means a
file on the Gfarm filesystem, and that an LFS file means a
file on the common UNIX filesystem.

• Case 1 (Input/GFS → Temporary/Remote)
The remote library of Ninf-G opens a GFS file by using the C API
of Gfarm and copies the context to the temporary LFS file on the
remote. The GFS file is specified in the GridRPC argument of the
calls from the client-side.

• Case 2 (Temporary/Remote → Output/GFS)
The remote library of Ninf-G opens a temporary LFS file and copies
the context to a GFS file specified in the GridRPC call. If the remote
node is a Gfarm storage node, the GFS file will be created in the
spool of the Gfarm storage on the local host. This is a selection
mechanism of the storage node in Gfarm.

• Case 3 (Input/Client → Temporary/GFS)
An LFS file on the client is transmitted to a temporary GFS file,
using GASS transmission which is implemented in Ninf-G, version
2.3. The physical location of the GFS file is determined according
to the Gfarm storage selection mechanism, as in Case 2.

• Case 4 (Temporary/GFS → Output/Client)
A temporary GFS file is transmitted to the client, using the GASS
transmission function of Ninf-G. The physical location of the GFS
file follows the Gfarm storage selection mechanism, as in Case 2.

• Case 5 (Input/GFS → Temporary/GFS)
Because the source and destination is the same, it is not necessary
to transmit the file. When the compute node is a storage node of
Gfarm, however, the GFS file is replicated on the spool of the node.

• Case 6 (Temporary/GFS → Output/GFS)
Because the source and destination is the same, it is not necessary
to transmit the file. The file is not replicated in this case, which is
different from Case 5.

The temporary file on the Gfarm filesystem is created in
the directory “gfarm:ng/tmp/.” The file path of the GridRPC
argument is transformed to “/gfarm/ng/tmp/〈filename〉.”
However, this is only available when the system call hook
library is installed on the compute node.

3.3. Use and limitation

In order to use the present function, the client must de-
scribe the following in the GridRPC argument.

GFS:[LTMP |GTMP]:[LFILE|GFILE]:〈file path〉
[:[LFILE|GFILE]:〈file path〉]

“GFS:” is a reserved word indicating that additional pa-
rameters of our extension follow. [LTMP |GTMP] is a
user’s option specifying whether the temporary file is cre-
ated on the local filesystem or on the Gfarm filesystem.
[LFILE|GFILE] indicates whether the next path after
the colon specifies an LFS file or a GFS file. For in-
stance, when the file “gfarm:exp1/input.dat” is transmitted
to the compute node as in No.7 in Table 1, the input ar-
gument is “GFS:LTMP:GFILE:exp1/input.dat”, shown in
the [Extended description] part of Figure 3. The second
[LFILE|GFILE] is for the INOUT mode and can be
omitted in other modes. In transmission pattern Nos. 6,
8, 15, and 17, the filesystem of the input file and the out-
put file may possibly be different; one file is on the local
filesystem and the other is on the Gfarm filesystem.

In the transmission patterns in Table 1, Nos. 2, 4, and
5 have already implemented in the current Ninf-G. Nos. 9
and 18 are used for a scenario where the required data is
on the Gfarm filesystem. Nos. 11 and 13 are useful for
the fault tolerance feature of the remote program, because
the temporary file is created on the Gfarm filesystem. The
other transmission patterns are used for the implementation
of Task Sequencing, which is described in the next section.

4. Design and implementation of a Task Se-
quencing API library

4.1. Task Sequencing API

In this study, the Task Sequencing API shown in Figure
4 is implemented, referencing the APIs of Ninf and Net-
Solve. grpc begin sequence() passes the beginning of the
sequence to the library. grpc submit() is a function used to
invoke GridRPC with the name of the remote function and
some arguments. grpc submit() is actually a wrapper func-
tion of grpc call async() which is defined in the GridRPC
API standard, and it does not require the function handle as

grpc_begin_sequence(TMP_ON_GFS, DUPLICATION_ON);
grpc_submit("func1", A, B);
grpc_submit("func2", B, C);
grpc_end_sequence();

Figure 4. Task Sequencing API

Figure 5. Intermediate data transfer using Gfarm

its argument. When grpc end sequence() is called, the se-
quence is finalized. Then the sequence is analyzed in the
library and the destination of each RPC is automatically de-
termined with optimized data logistics. In the example in
Figure 4, when func1 is executed with input data A, the out-
put data is B. Because data B becomes the input data of
func2, those two functions, func1 and func2, are expected
to be processed on the same node. When users cannot avoid
running func2 on another node, however, data B should be
transmitted directly from the node which services func1 to
the node which services func2. This is achieved in the Task
Sequencing API library we implemented with the extension
in the last section. As shown in Figure 5, data B is trans-
mitted by way of (2) and (3) with the previous Ninf-G. The
extended Ninf-G can transmit data B by way of (2’) and
(3’), through the Gfarm filesystem. The final result C is
sent back only to the client. Determination of the RPC des-
tination and data transmission of the intermediate data are
hidden in our library, so that the application program does
not have to care about that level of complexity.

In addition, our API accepts two options for convenience
and fault tolerance. The options are specified as the argu-
ment of grpc begin sequence(). When TMP ON LOCAL
is given to the first argument, the intermediate data file
is transmitted through the client. When TMP ON GFS is
given, the intermediate file is transmitted though the Gfarm
filesystem. When DUPLICATION ON is given to the sec-
ond argument, with TMP ON GFS to the first argument,
the intermediate file is replicated on another storage node.
This becomes a backup in an emergency if the storage node
which stores the intermediate data becomes unavailable.

4.2. Implementation

Inside of our Task Sequencing library, the Argument
Stack API provided by Ninf-G creates an argument stack

1) Allocate a resource to each task (from Task1 to TaskN).
2) Set value i to 1.
3) Analyze arguments of Taski and Taski+1 in the following loop.
3-1) Find the next OUT-mode argument for Taski. If no more argu-
ments, go to 3-5).
3-2) Find the next IN-mode argument for Taski+1. If no more argu-
ments, go to 3-1).
3-3) Compare the two arguments found at 3-1) and 3-2) by their data-
types and pointers. When those arguments indicate the same data, the
data must be intermediate data which is the output of Taski and the
input of Taski+1.
3-4) Go back to 3-2).
3-5) Increment value i by 1. If value i is N − 1 or less, go back to
3-1). Otherwise, exit the loop.

Figure 6. The process flow of the Task Sequence

when grpc submit() is called. When grpc end sequence()
is called, the argument stack is analyzed and modified for
optimized data logistics. Then each task is sequentially ex-
ecuted on the assigned node.

Figure 5 shows the internal process flow of
grpc end sequence() during execution of a Task Se-
quencing job that consists of N RPCs. The candidates
for the execution node are selected by the function name
of the first RPC request in 1), and the RPC is assigned to
the top of the list. If the second RPC can be processed on
the same node as the previous RPC, the second RPC is
assigned to the node. If not, the second RPC is assigned to
another node at the top of the candidate list. This operation
is applied repeatedly.

After all of the RPC requests are assigned to appropriate
nodes, two arguments next to each other are compared in
order to detect the intermediate data in 3). First, the output
mode argument is picked up in the proper order, from the
first argument of the first RPC. The data type of the argu-
ment is compared with that of the input mode argument of
the second RPC. If the data type is the same, the pointers
of the arguments are also compared to conclude whether or
not the arguments represent the same data, which means the
argument is the intermediate data of the sequence. The in-
termediate data should be created on the Gfarm filesystem,
according to the given parameter of grpc begin sequence().

Our implementation supports Task Sequencing for the
file type argument of GridRPC. In the example in Figure 4,
the output file of func1 and the input file of func2 are the
same GFS file. The transmission patterns used for Task Se-
quencing are categorized by the location of the temporary
file and the input/output mode of func1 or func2. In this
study, our library is implemented using a set made up of
Nos. 3 and 7, and a set made up of Nos. 6 and 8. The
Task Sequencing library internally modifies user’s file path
parameter to the GFS file path, in order to create the in-
termediate file on the Gfarm filesystem in execution. After
result C is sent back to the client, the library deletes the
intermediate GFS file.

Table 2. Computational environment
Site (role) CPU OS kernel Globus (flavor) I/O for Local FS I/O for Gfarm FS

Read Write Read Write
AIST (client) PentiumIII 1.4GHz× 2 Linux 2.4.20 2.4.3 (gcc32) 144 (46.0) 33.3 – –
AIST (server) Xeon 2.8GHz×2 Linux 2.6.9 3.2.1 (gcc32) 122 (98.2) 112 72.6 92.7
NCSA (server) Xeon 2.0GHz× 4 Linux 2.4.21 2.4.3 (gcc32pthr) 991 (71.8) 22.5 91.9 21.8

I/O performance unit: Mbytes/sec

Table 3. Network performance
From To

AIST (client) AIST (server) NCSA (server)
AIST (client) – 59.59 [MB/sec] Not measured
AIST (server) 51.46 [MB/sec] 86.13 Not measured
NCSA (server) 0.19 0.35 82.39

Table 4. Performance of data transfer when both
functions are serviced at the AIST site

Transfer type 10 MB data 50 MB data
(Total)−(Func) (2)+(3) (Total)−(Func) (2)+(3)

Gfarm 2.10 [sec] 0.68 [sec] 7.08 [sec] 2.09 [sec]
GASS 2.51 1.10 16.0 8.41
Protocol 1.10 0.470 4.45 1.99
Remote object 1.33 0.00955 4.71 0.0467

5. Evaluation

Our Task Sequencing API library over a Ninf-G exten-
sion using Gfarm was evaluated on the testbed, in terms of
the usefulness of direct data transmission. The testbed con-
sisted of one client node and two servers at AIST, and two
servers at NCSA (National Center for Supercomputing Ap-
plications). The specifications of those machines are shown
in Table 2. The I/O columns display read and write perfor-
mance on the local filesystem and on the Gfarm filesystem.
In the I/O measurement for Gfarm, a benchmark program
read and wrote data through the Gfarm spool on the local
host. The buffer size was set as 8 KB. 1 GB of data was writ-
ten into a file and read from the file. Because a cache effect
was observed in the local access, the raw speed of the disk
access is displayed in the parenthesis. The AIST (server)
uses a RAID system and NCSA (server) accesses the file on
a RAID system via NFS. A Gfarm metadata server runs on
a node at the AIST site.

Table 3 shows TCP throughput between servers, the
value of which is the average of the 1-minute-measurement
by Netperf, at 3 different moments. The route from AIST
to NCSA was not measured due to firewall restrictions.

5.1. Experiments

In the experiments, func1 and func2 are serviced on re-
mote, but different, nodes. Each function requires two
file type arguments, input and output. The submitted Task
Sequencing job is to execute func1 and then func2. The
Ninf-G client ran on AIST throughout our entire experi-
ments. Table 4 shows the experiment results when both
the func1 and func2 serviced nodes were at AIST. Table
5 shows the experiment results when both functions were

Table 5. Performance of data transfer when both
functions are serviced at the NCSA site

Transfer type 10 MB data 50 MB data
(Total)−(Func) (2)+(3) (Total)−(Func) (2)+(3)

Gfarm 127 [sec] 4.26 [sec] 601 [sec] 9.07 [sec]
GASS 233 107 1151 577
Protocol 274 128 1362 680
Remote object 115 0.0316 585 0.114

Table 6. Performance of data transfer when func1
is serviced at the NCSA site and func2 is serviced
at the AIST site

Transfer type 10 MB data 50 MB data
(Total)−(Func) (2)+(3) (Total)−(Func) (2)+(3)

Gfarm 111 [sec] 23.7 [sec] 497 [sec] 64.6 [sec]
GASS 116 28.6 592 138
Protocol 150 54.1 691 260

serviced at NCSA nodes. Table 6 shows the experiment
results when func1 was serviced on the NCSA node, and
func2 was serviced on the AIST node. The size of the
input file and the output file are the same in the experi-
ment, and we had two cases, one each of a 10 MB file
and a 50 MB file. In the tables, the value (Total)-(Func)
is obtained when the execution time of func1 and func2
is subtracted from the total execution time that is mea-
sured from the time grpc begin sequence() starts, to the
time grpc end sequence() ends. The value (2)+(3) is the
time of the intermediate data transmission, which is shown
as via (2) and (3), or via (2’) and (3’) in Figure 5.

In the results in Tables 4 ∼ 6, three file transmission
methods are compared in terms of performance. Gfarm
in the table represents the transmission through the Gfarm
filesystem. Shared key authentication is used to access the
storage node when both the client and the server are at
AIST. GSI authentication is used in the case where both
the client and the server are at NCSA, and in the case where
the client gets access to a storage server on another site. We
launched gfarm agent on each cluster to improve the access
speed to the metadata server. GASS in the table represents
GASS transmission integrated into Ninf-G. The HTTP pro-
tocol was used in the experiments. Protocol represents the
file transmission over the Ninf-G protocol which has been
implemented with Globus XIO since Ninf-G version 2.4.
GASS and Protocol always transfer data from one server
to another server, through the client. Remote-object repre-
sents an implementation using the remote-object function
of Ninf-G. In this case, func1 and func2 are implemented in
a single program and serviced on a single host. The inter-
mediate data is just stored on the node.

5.2. Results and Discussions

The Gfarm transmission was faster than the GASS trans-
mission but slower than the Protocol transmission, as shown
in Table 4. There are two main reasons for this result. Au-
thentication at the storage server costs 0.2 seconds on aver-
age. Also, access to the metadata server generates overhead.

In Table 5, the transmission cost through the client was
obviously large. Task Sequencing using Gfarm was pro-
cessed in half the time of Task Sequencing using GASS.
The results in Table 6 show the performance difference
between Gfarm transmission and GASS transmission in
the case where data is transmitted over a wide-area net-
work. Protocol transmission was fast when the client and
the servers were at AIST. However, Protocol transmission
was much slower than GASS transmission because Proto-
col does not configure a large socket buffer for the wide-
area network as GASS does.

The performance of Remote-object is shown at the bot-
tom of Table 4. This is the case where the cost of intermedi-
ate data transmission is almost zero. The execution time of
Remote-object is longer than Protocol’s, however, because
the data transmission of input and output are performed by
GASS transmission.

It is revealed that the proposed Task Sequencing API li-
brary performs efficient execution by taking advantage of
Gfarm’s capability. Users can benefit from more time re-
ductions when the data transmission cost is large on cross-
sites. In the intra-site, the execution time of Gfarm trans-
mission is shorter than GASS transmission of the conven-
tional Ninf-G. Although Protocol transmission is faster than
Gfarm’s, users benefit from a backup function of the inter-
mediate file by Gfarm. If disk space on the client is very
limited, the proposed library will be useful because the in-
termediate data is not necessarily sent back to the client.
Another advantage of the Task Sequencing API library is
that users do not have to worry about the physical location
of the intermediate data and the data transmission, but can
concentrate on application development.

6. Conclusion

Direct data transmission between servers was designed
and implemented on the GridRPC system. The Task Se-
quencing API was proposed for describing a sequence job
which consists of several tasks. Our implementation does
not require a lot of modification into Ninf-G. The file type
argument of Ninf-G is simply extended to accept the Gfarm
file path. Reading, writing and copying data on the Gfarm
filesystem is completely hidden in the remote-side library of
Ninf-G. The Task Sequencing API library is implemented
on top of the extension, and evaluated on the grid testbed
between Japan and the United States. The results indicate

that direct data transfer is significantly effective in execut-
ing a Task Sequencing job, on a wide-area network.

Future works are to implement the direct transmission of
the non-file type argument, and to improve the task assign-
ment algorithm in the evaluation with practical applications.

Acknowledgements
We would like to thank Dr. Tatebe (Tsukuba University), who

gave us many comments on our work.
We are grateful for resource contributions by the National Cen-

ter for Supercomputing Applications.

References

[1] K. Seymour, H. Nakada, S. Matsuoka, J. Dongarra, C. Lee, and
H. Casanova. Overview of GridRPC: A Remote Procedure Call API
for Grid Computing. In M. Parashar, editor, Proceedings of the 3rd
International Workshop on Grid Computing, pp. 274–278, 2002.

[2] H. Takemiya, K. Shudo, Y. Tanaka, and S. Sekiguchi. Constructing
Grid Applications Using Standard Grid Middleware. Grid Comput-
ing, Vol. 1, pp. 117–131, 2003.

[3] Y. Tanimura, T. Ikegami, H. Nakada, Y. Tanaka, and S. Sekiguchi.
Implementation of Fault-Tolerant GridRPC Applications. In GFD-
I.68 (Workshop on Grid Applications: From Early Adopters to Main-
stream Users), pp. 38–49. Global Grid Forum, 2006.

[4] A. Mayer, S. McGough, N. Furmento, W. Lee, M. Gulamali, S. New-
house, and J. Darlington. Workflow Expression: Comparison of Spa-
tial and Temporal Approaches. In Workflow in Grid Systems Work-
shop, GGF-10, 2004.

[5] Y. Tanaka and et al. Ninf-G: A Reference Implementation of RPC-
based Programming Middleware for Grid Computing. Grid Comput-
ing, Vol. 1, No. 1, pp. 41–51, 2003.

[6] D. Arnold, S. Agrawal, S. Blackford, J. Dongarra, M. Miller, K. Sey-
mour, K. Sagi, Z. Shi, and S. Vadhiyar. Users’ Guide to NetSolve
V1.4.1. Innovative Computing Dept. Technical Report ICL-UT-02-
05, University of Tennessee, 2002.

[7] M. Sato, T. Boku, and D. Takahashi. OmniRPC: a Grid RPC Sys-
tem for Parallel Programming in Cluster and Grid Environment. In
Proceedings of CCGrid 2003, pp. 206–213, 2003.

[8] O. Tatebe, Y. Morita, S. Matsuoka, N. Soda, and S. Sekiguchi. Grid
Datafarm Architecture for Petascale Data Intensive Computing. In
Proceedings of CCGrid 2002, pp. 102–110, 2002.

[9] H. Nakada and et al. Design and Implementation of Ninf: toward
a Global Computing Infrastructure. Future Generation Computing
Systems, Metacomputing Issue, Vol. 15, pp. 649–658, 1999.

[10] D. Arnold, S. Vadhiyar, and J. Dongarra. On The Convergence of
Computational and Data Grids. Parallel Processing Letters, Vol. 11,
No. 2–3, pp. 187–202, 9 2001.

[11] J. S. Plank, A. Bassi, M. Beck, T. Moore, M. Swany, and R. Wolski.
Managing Data Storage in the Network. IEEE Internet Computing,
Vol. 5, No. 5, pp. 50–58, 2001.

[12] D. Arnold, D. Bechmann, and J. Dongarra. Request Sequencing:
Optimizing Communication for the Grid. Lecture Notes in Computer
Science: Proceedings of the 6th International Euro-Par Conference,
Vol. 1900, pp. 1213–1222, 2000.

[13] E. Caron and F. Desprez. DIET: A Scalable Toolbox to Build Net-
work Enabled Servers on the Grid. Technical Report RR-5601,
The French National Institute for Research in Computer Science and
Control, 2005.

[14] I. Foster, C. Kesselman, J. Tedesco, and S. Tuecke. GASS: A Data
Movement and Access Service for Wide Area Computing Systems.
In Sixth Workshop on I/O in Parallel and Distributed Systems, 1999.

