The Design and Implementation of a Virtual Cluster Management System

Hidemoto Nakada 1, Takeshi Yokoi 1, Tadashi Ebara 1, 2
Yusuke Tanimura 1, Hirotaka Ogawa 1, Satoshi Sekiguchi 1
1. National Institute of Advanced Industrial Science and Technology
2. SUURI Giken
Background

Computer Virtualization
- Virtual computers contribute reduction of management cost

Virtual Computer → Virtual Cluster
- For further reduction of management cost

What is Virtual Cluster?
- Not mere a group of virtual computers
 - Software configuration, management tools
 - Ex. User namespaces management
- Computer virtualization is not enough
 - Storage
 - Network
Goal

Virtual Cluster

- For specific time period, a virtual cluster, with specified software installed, is provided.
- Users have total control over the cluster
 - Modifications of configuration are allowed
- Assumed time period: few days - few months.

Proposes a Virtual Cluster Management System

- Using Rocks, user specified applications and management tools are automatically installed and configured
- Virtualization of computer, storage and network
 - Computer - VMware Server
 - Storage - iSCSI + LVM
 - Network - VLAN
Scenario

1. Install physical cluster
2. Request virtual cluster
3. Virtual Cluster installation Service deployment
4. Users enjoy the services
Other examples of usage

- **At Class Room**
 - Allocate virtual clusters for each group of students
 - Students can try configuration and installation
 - Can restore to the original state
 - Wakes up same time weekly

- **On demand computer farm expansion**
 - Temporally expand computer farm to meet deadline
 - Transparent for users, with grid technology
 - Database and applications are automatically deployed
Requirements for Virtual Clusters

- **For Service Providers**, looks same as the physical clusters

Nodes and Networks
- One front-end node and worker nodes
- The front-end acts as router for external network
- Worker nodes are attached to internal network
 - Internal network is safe

Configuration
- Shared user name space and file space
- Operation utilities are installed
 - Monitoring systems
 - Batch queuing systems

Storage
- Shared storage
- Scratch file system on each node
Requirements for Virtual Cluster Management System

- Automatic deploy and configuration of applications
 - Complicated configuration over several nodes
 - Routing, etc.

- Computer Virtualization
 - Single physical nodes may host plural virtual nodes

- Storage Virtualization
 - Flexible storage management
 - Independent of physical disk configuration
 - Centralized management to decrease management cost

- Network Virtualization
 - With commonly used bridged connection, virtual nodes shares network with real nodes
 - Inappropriate for virtual cluster: separation is needed
Proposed System (1)

- Automated application installation and node configuration.
- Leverage Rocks, Cluster installation tool.
 - Developed by UCSD as a part of NPACI project
 - Widely use with for cluster management
 - Plenty amount of Rolls(meta packages) are there
 - Covers most scientific computing applications and middlewares
 - No need to re-package them
Proposed System (2)

- **Computer Virtualization**
 - VMware Server
 - Freely available VMM with full virtualization

- **Storage Virtualization**
 - iSCSI + LVM (Logical Volume Manager)
 - iSCSI for location transparency
 - LVM for easy storage management

- **Network Virtualization**
 - Tagged VLAN
 - Logically separate networks of virtual clusters on a physical cluster
Storage Virtualization

- Virtualize away storage from physical substance (i.e. disks), to reduce management cost
 - iSCSI for location transparency
 - Enables centralized management.
 - LVM to enable arbitrary storage configuration, independent of physical disk configuration
Problem: VMware Server does not support iSCSI

Work around: Host OS attaches the iSCSI volumes and exposes them to VMM
VLAN for separation of virtual clusters

- Each virtual cluster has its own dedicated internal network.
- A node in a virtual cluster cannot peek in the network of other virtual clusters.
Separation fo Virtual Cluster with tagged VLAN

- Host node maps a tagged VLAN with a virtual cluster instance
 - Host node manages several tagged network interfaces
 - Host node maps one of them to the guest network interface
- No configuration required within the virtual node
 - Configuration in virtual nodes could be changed by the user.
Overview of Rocks

Cluster installation system developed by UCSD, as a part of NPACI effort.

Supports Cluster Installation and Cluster Management.

“Roll” defines ‘Macro-package’ for each application
- Ex. HPC Roll, Grid Roll

“Appliance” defines roles of nodes
- Ex. Compute Node, Database Node

Cluster monitoring by Ganglia

User management by 411
Cluster installation with Rocks

- Install a front-end from CD (or from central server on network)
- Power on compute nodes one by one
 - Each node automatically gets packages from the front-end and installed.
 - Node numbers are implicitly determined by the order of power-on
Virtual Cluster and Rocks

- **Install 'virtual front-end' as a virtual node**
 - From the virtual front-end other nodes are installed

![Diagram showing virtual and physical worlds with nodes and arrows indicating connections]

- **The physical cluster, including the virtual cluster management system, is also managed by Rocks**
 - Physical cluster management is also easy
Configuration of the proposed virtual cluster

Four types of nodes

- **Cluster Manager**
 - Just One for the whole physical Cluster

- **Gateway Nodes**
 - Host virtual frontend nodes
 - Have access to the external network

- **VM Server Nodes**
 - Hosts virtual compute nodes

- **Storage Nodes**
 - Manages disks and provides iSCSI access
Operation steps

1. Service Provider makes reservation for a virtual cluster via web based interface
 - Start time, end time, amount of memory, amount of storage
 - Roll, Appliance
 - ssh public key to access the virtual front-end

2. On the start-up time
 - A Virtual cluster will be set up.
 - Storage and VLAN tag are allocated
 - A Rocks Cluster is installed in the virtual world
 - Virtual front-end is installed
 - Virtual-nodes are installed from the virtual front-end
3. When all the installation finishes,
 - Pass the control over the virtual cluster to the service provider.
 - The service provider now can log in using the ssh key, and do anything they want.

4. On reservation end time
 - Release allocated resources, i.e. storage and virtual computers, and VLAN tag
 - Virtual computers are just shut off
Virtual Cluster Installation

Global Network

Local Network

frontend

virtual frontend

virtual node

virtual node

virtual node

virtual node

gateway

vm server

vm server

vm server

vm server

iSCSI Server

VLAN
Measurement

Measured installation time for clusters

- Physical cluster installation
- Virtual cluster installation
- For several # of nodes.
Installation time required for virtual cluster is equivalent with physical cluster.

Note: the installed packages are not completely the same.
Related work

ORE Grid [Nishimura ‘07]
- Leverages Lucie, a cluster installation tool
- hi speed cluster installation

Virtual workspace [Keahey ‘06]
- A part of Globus project
- Provides Web Service based interface to create a virtualized environment, where users can submit their jobs.
- Create one virtual node for one job
Related work (2)

- **Xen Cluster with OSCAR [Vallee '06]**
 - OSCAR
 - Cluster deployment tool like Rocks

- **Cisco vFrame**
 - Virtualizes storage and network using Infiniband network, SAN and dedicated switch.
 - Computers are not virtualized
 - Super expensive.
Summary

- Proposed a Virtual Cluster Management System
 - Automatic Virtual cluster deployment and configuration by NPACI Rocks
 - Virtualized computer, storage and network VMware Server
 - iSCSI + LVM
 - VLAN

- Measured Installation time
 - Confirmed that the speed is comparable with the real clusters.
Future Work

- Hide installation cost from service providers
 - Install virtual nodes in advance

- Adopt Xen
 - Rocks4, based on CentOS4 is not compatible with Xen
 - We are waiting for Rocks5, based on CentOS 5

- Advanced Virtual Storage management
 - Cluster file system such as Lustre or PVFS for high performance storage
 - No idea how it would work with iSCSI, though

- Other Operating System / Distributions as Guest
 - Windows CCS?

- Implement external interface for cluster reservation
 - WSRF based?
 - Waiting for ‘standard’...
Future work (2)

- One virtual cluster over several physical clusters
 - Provides large virtual clusters with Single System Image
 - Using VPN
 - A demo will be shown at SC’07, Reno
Acknowledgement

We'd like to thank SDSC Rocks team including

Mason Kats
Greg Bruno
Anoop Rajendra