
Design and Implementation of Condor-UNICORE Bridge

Hidemoto Nakada
National Institute of Advanced Industrial

Science and Technology (AIST)
1-1-1 Umezono, Tsukuba, 305-8568, Japan

hide-nakada@aist.go.jp

Jaime Frey
University of Wisconsin

1210 W Dayton St, Madison, WI 53706, U.S.
jfrey@cs.wisc.edu

Motohiro Yamada, Yasuyoshi Itou
Fujitsu Limited

1-9-3, Nakase, Chiba City,
Chiba, 261-8588, Japan

moto.yamada@jp.fujitsu.com, itou@strad.ssg.fujitsu.com

Yasumasa Nakano
Fujitsu Limited

140 Miyamoto, Numazu,
Shizuoka, 410-0396 Japan
nakano@soft.fujitsu.com

Satoshi Matsuoka
Tokyo Institute of Technology,

2-12-1 Ookayama, Tokyo, 152-8550, Japan
matsu@is.titech.ac.jp

Abstract

In this paper, we describe the design and implementa-
tion of a generic grid interface for Condor. Though Con-
dor has intefaces for specific grid systems, such as Globus
Toolkit 2 GRAM, it is not easy to add new interfaces for
other grid systems, since it requires some code modifica-
tion inside the Condor. With our new interface design, sup-
porting a new grid system can be established without any
code modification in the Condor core itself. We also imple-
mented a bridge for the UNICORE system and validated
that our approach is effective.

1. Introduction

Condor is a job queuing system, developed at the Uni-
versity of Wisconsin, aiming to achieve high-throughput
computing utilizing unused computers within the campus.
It also can work as a meta-scheduler that harnesses remote
schedulers via grid-aware remote execution systems, such
as Globus GRAM [3]. Using Condor, users can submit their
jobs to remote sites through the grid-aware systems. Al-
though Condor has an interface mechanism to communi-
cate with grid-aware systems, the interface mechanism is
not well generalized. Adding a new interface to a new grid-

aware system requires code modification inside the Condor
core.

We designed a new interface architecture for Condor to
talk with external grid-aware systems that enables the addi-
tion of new external system support without modifying the
Condor core. Based on the architecture, we implemented a
new bridge that connects Condor with UNICORE[5, 2], a
grid-aware system, to validate the approach.

The rest of the paper is structured as follows. In Sections
2 and 3, we give a brief description of Condor and UNI-
CORE, respectively. In Section 4, we propose the design of
the generic interface architecture. In Section 5, we give a
detailed explanation of the implementation of the bridge to
UNICORE. Section 6 concludes the paper, giving a sum-
mary and our future work.

2. Overview of Condor

Condor is a job queuing system, developed at the Univer-
sity of Wisconsin, aiming to achieve high-throughput com-
puting utilizing unused computers within the campus. Re-
cently, it has also been used as a meta-scheduler for Globus
[3]-managed resources. Condor manages numerous com-
puter resources and assigns them to submitted jobs from
users.

Condor uses a flexible mechanism called

Central
Manager
Central

Manager Cluster

Cluster

Condor Pool

Execute
Machine

Submit
Machine

Submit
Machine

Job

Job

Allocate Execute machine
for each job

Figure 1. Overview of Condor.

‘matchmaking’[4] to allocate the resources for the
jobs. Condor also supports user program checkpoint-
ing and preemption to enable flexible priority based job
scheduling [7].

2.1. Condor Architecture

Figure 1 shows an overview of the Condor System. Com-
puters participating in a Condor pool can have three roles:
central manager, submission machine, and execution ma-
chine. A computer can play multiple roles. A Condor pool
has to have exactly one central manager and one or more
submission machines and one or more execution machine.
Users submit jobs from the submission machine, and the
central manager takes care of allocating an execution ma-
chine for each and every job.

A submission machine embodies a job queue and sends
job information periodically to the central manager. An exe-
cution machine monitors its own resource information, such
as load average and amount of free memory, and reports it to
the central manager periodically. The central manager takes
this information and decides on a suitable execution ma-
chine to be matched with a queued job.

Figure 2 shows the Condor daemons. On the submit ma-
chine, there is a daemon called the Schedd (Scheduler Dae-
mon), that manages a job queue. Each Schedd has its own
independent job queue. Users submit jobs to the Schedd and
the Schedd sends the job information to the Collector on the
central manager. On the execute machine, a daemon called
the Startd (Start Daemon) monitors the status of the ma-
chine and reports it to the Collector periodically.

On the central manager, the Negotiator matches jobs and

Execute MachineSubmit Machine

Submit

Schedd

Starter
JobJob

Shadow
Condor
Syscall Lib

Startd

Central Manager

CollectorNegotiator

Figure 2. Condor daemons.

resources using the information gathered by the Collector.
When a job is matched to a resource, the Negotiator in-
forms the Schedd and Startd. The Schedd sends the job to
the Startd for execution.

2.2. ClassAds

ClassAds are the source of flexibility in Condor. They
are modeled after the classified ads in the newspaper. A
ClassAd describes the attributes of an entity and the prefer-
ences and requirements that entity is looking for in a match.
A match-maker makes the best matches between entities
within the requirements given. In Condor, the entities are
jobs and resources and the Negotiator performs the match-
making. ClassAds are schema-less, which makes it easy for
users to add new attributes.

2.3. Condor-G

Condor can submit jobs to compute resources that are
managed by GRAM, the resource manager provided as a
part of the Globus Toolkit. This facility is called Condor-
G[6].

Figure 3 shows the diagram for job invocation in Condor-
G. In Condor-G, a Globus GRAM server replaces the Con-
dor Startd as the manager of the execution resource. Instead
of a Shadow, the Schedd starts a GridManager, which talks
to the Globus GRAM server. The GridManager invokes an-
other process called the Globus GAHP server that is respon-
sible for Globus protocol handling. The GridManager and
Globus GAHP server talk each other with a protocol called
GAHP[1], which will be described below.

After being authenticated by the GRAM gatekeeper, the
GAHP server submits a job request to the jobmanager. The
jobmanager then submits the job to the local batch queue-
ing system, which finally executes the job.

2

Globus
Execute Machine

Condor
Submit Machine

Submit

Schedd

Job

Grid
Manager

Globus
GAHP
Server

GateKeeper

JobManager

Batch System
Globus
GAHP

GRAM
Protocol

Figure 3. Job Submission by Condor-G.

2.4. GAHP Overview

GAHP (Grid ASCII Helper Protocol) is a text-based pro-
tocol designed to let the GridManager use grid software that
it cannot be easily linked with. The library is isolated in a
seperate process (called the GAHP server) that the Grid-
Manager communicates with via a pair of pipes. The Grid-
manager issues requests to invoke operations in the grid
software and the GAHP server replies with the results of
those operations. The protocol is asynchronous and non-
blocking with respect to the requested operations. The Grid-
Manager can have many requests outstanding, the opera-
tions executing in parallel in the GAHP server.

Figure 4 shows the exchange for one operation. The
client (the GridManager) sends a Request Line to the
server, consisting of the operation name, an identifier for the
request, and a list of input parameters. The server replies im-
mediately with a Return Line indicating the request is un-
derstood and the operation will be carried out. The client
is then free to perform other tasks, including issuing more
requests. Once the operation completes, the server sends a
Result Line, which includes the request id, whether the op-
eration was successful, and a list of output parameters.

Each line is terminated by CR LF and the fields within
the line are seperated by spaces. Spaces, CR LFs, and back-
slashes within the fields must be escaped with a backslash.

The base GAHP protocol defines a framework for com-
munication. To use it, a specific command set has to be de-
fined. This includes command names and what parameters
they use. The Globus GAHP server uses its own command
set specific to Globus GRAM.

3. UNICORE Overview

UNICORE is a grid-aware middleware developed
mainly by Fujitsu Laboratory Europe. The main goal of the

GridManager GAHP Server

Request

Return

Result

Figure 4. GAHP message communication.

system is to enable the seamless utilization of supercom-
puters residing in several geographically distributed super-
computer centers. The goal required UNICORE to have
firewall-aware architecture.

One of the paramount features of UNICORE is work-
flow management. UNICORE has a workflow engine em-
bedded in it, and users can submit a group of jobs specify-
ing dependencies among the jobs. The job workflow is rep-
resented as a Java object, called AJO (Abstract Job Object).

Figure 5 shows an overview of UNICORE. UNI-
CORE has a two-level abstraction for sites. One level
is called Usite (Unicore Site), that stands for organi-
zations surrounded by firewalls, such as a supercom-
puter center. Each Usite has a daemon called Gateway,
that runs on the firewall and relay all the communica-
tion to/from the Usite.

Each Usite has one or more Vsites (Virtual Sites) in
it, which stands for a scheduler queue for computation.
A Vsite can be a single computer, a cluster that shares a
scheduling queue, or a supercomputer. Each Usite has a dae-
mon called NJS (Network Job Supervisor), that is responsi-
ble for job execution. NJS also works as a workflow engine,
cooperating with another daemon called TSI.

TSI(Target System Interface) is a wrapper script that ab-
stracts local job schedulers such as PBS or LSF.

4. Design of a Generic Interface for Grid-
Aware Systems

4.1. Condor-G GAHP protocol

As mensioned in section 2.3, Condor-G has the Grid-
Manager and Globus GAHP server as separate modules,
and all the code that uses Globus API is inside the GAHP
server.

Readers might think that it would be easy to rewrite the
GAHP server to support a new grid-aware remote execution
system, but that is not the case. The problem is that the logic
to control the Globus resides in the GridManager, not in
the Globus GAHP server. As the result, the Globus GAHP

3

Usite
Vsite

NJS

Gateway

Client

Vsite

NJS

TSI

Batch
Subsystem

TSI

Batch
Subsystem

Firewall

Figure 5. Overview of UNICORE.

server command set has Globus-specific, complicated se-
mantics. The Globus GAHP server is just a stub program
to communicate with the Globus modules, and all the pro-
gram logic is in the GridManager.

With this approach, supporting a new grid aware system
would require 1) rewriting the GridManager to implement
the system specific job control logic, 2) defining a GAHP
command set that is specific for the system, and 3) writing
a GAHP server that supports the command set.

The hardest part is the first one, since the GridManager
is a very complicated program that includes Condor specific
implementation details.

4.2. Generic GAHP command set

To cope with the issue discussed above, we defined a
generic GAHP command set that can handle any grid-aware
system. The command set is designed to be grid system neu-
tral. With this command set, supporting a new grid-aware
system can be achieved just by re-implementing the GAHP
server.

Table 1 shows the generic GAHP command set. <S|F>
means that the string will be ‘S’ or ‘F’, which stand for
‘Success’ and ‘Failure’. <S|E> means that the string will
be ‘S’ or ‘E’, which stands for ‘Success’ and ‘Error’.

Note that the command set itself does not have any spe-
cific features for UNICORE, even though the command
name includes ‘UNICORE’.

The generic command set is composed of 5 com-
mands: create, start, status, recover, and destroy. We used
the ClassAd format to represent job requirements and
job status. The reasons are 1) ClassAds are used every-
where in the Condor implementation and can be easily

Condor
Submit Machine

Submit

Schedd

Grid
Manager

UNICORE
GAHP
Server

UNICORE
GAHP

Usite

Gateway

Vsite

NJS

TSI

Batch
Subsystem

Firewall

Job

UNICORE
Protocol

UNICORE
Protocol

Figure 6. Job Submission using the UNI-
CORE bridge.

handled with in Condor, and 2) ClassAds are flexible, al-
lowing designers to add arbitrary attributes.

ClassAds have two text notation forms. One is XML
based and the other is a propretary format. We used the
XML based notation.

5. Implementation of the UNICORE Bridge
with Generic GAHP Command Set

To implement a bridge to a grid-aware system using the
generic GAHP command set, we have to define a system
specific ClassAd attribute set.

Since the GAHP protocol is based on simple text for-
mat, the GAHP server can be implemented in any language.
We choose Java as the implementation language because the
UNICORE protocol is strongly tied to the Java implemen-
tation.

Figure 6 shows job execution steps with the UNICORE
bridge.

5.1. Defining ClassAd Attributes

The ClassAd transferred between the GridManager and
the UNICORE GAHP server has to contain enough infor-
mation to create jobs and represent job status. Table 2 shows
attributes used in the UNICORE GAHP server. The first set
are also also in the other portions of the Condor system, and
the second set are only used for UNICORE GAHP.

The UNICORE GAHP server returns Job Status to the
Condor GridManager. The problem here is that there is a
semantic gap between Condor and UNICORE job status.
While in UNICORE job status is represented by three lay-
ered complex values, in CONDOR there are just 6 values to

4

NAME JOB CREATE
Request UNICORE_JOB_CREATE <req id> <job classad>
Return <S|E>
Result <req id> <S|F> <job handle> <error string>

NOTE Creates a job and returns the handle to the job. Description of the job is provided as a
ClassAd.

NAME JOB START
Request UNICORE_JOB_START <req id> <job handle>
Return <S|E>
Result <req id> <S|F> <error string>
NOTE Starts the job specified by the job handle.

NAME JOB STATUS
Request UNICORE_JOB_STATUS <req id> <job handle>
Return <S|E>
Result <req id> <S|F> <result classad> <error string>

NOTE Returns the status of the job specified by the job handle. Status is represented as the
ClassAd.

NAME JOB RECOVER
Request UNICORE_JOB_RECOVER <req id> <job classAd>
Return <S|E>
Result <req id> <S|F> <error string>

NOTE
Recovers a job that is already submitted. This command is used when the GAHP
server is restard by GridManager.

NAME JOB DESTROY
Request UNICORE_JOB_DESTROY <req id> <job handle>
Return <S|E>
Result <req id> <S|F> <error string>

NOTE
Destroys the job specified by the job handle. If the job is still alive, the GAHP server
will cancel it first, and then release the information stored inside the GAHP server. It
also tries to release information stored inside the target grid system, Unicore.

represent it. The UNICORE GAHP server maps the UNI-
CORE job status into Condor job status according to the
map shown in table 3, and returns it to the GridManager.

5.2. Pass phrase management

In UNICORE, clients and servers authenticate each other
with X.509 certificates. The UNICORE GAHP server acts
as a client in the UNICORE world, hence it needs to be able
to access the certificate, that is stored in the Java standard
KeyStore file. To access it, the GAHP server has to know
the pass phrase for it.

Readers might think that it will be accomplished by
prompting users on startup, but it is not acceptable since
the GAHP server will be rebooted automatically when the
client machine crashes. Users are not on the console at all
times.

We implemented the GAHP server so that it assumes the
pass phrase is stored in a file that will be only readable by
the user’s account. The GAHP server opens and reads the

file to get the passphrase and, using the passphrase, opens
the keystore and retrieves the user’s certificate.

5.3. Implementation of UNICORE GAHP server

The UNICORE GAHP Server shares its core part with
the GAHP server for Globus Toolkit 4. They both are im-
plemented in Java and share a package that is capable of
handling the basic GAHP protocol. The UNICORE specific
portion is implemented in different package.

The handler for each command has to be implemented as
a class. The mapping from command to class name is sup-
plied as a properties file. Hence, implementing a new GAHP
server does not require any modification of the core code.
All the programmer has to do is implement classes for each
command and write a map file for them.

5.4. UNICORE Job Submission from Condor

5.4.1. Writing the Submission File To submit a job to
UNICORE system from Condor, users have to write their

5

Attribute Ex.
Cmd executable file path /home/foo/a.exe
Args arguments given to the executable arg1, -a
Env environment variables for the execution LANG=en US
IWD client side base directory /home/nakada/condor
In input file to be read in from stdin input.dat
Out filename to store output from stdout ouput.dat
Err filename to store output from stderr Error.dat
TransferInput filenames to be staged to the execute machine a.exe, input.dat
TransferOutput filenames to be staged back to the client out.dat
JobStatus Condor job status refer to the table 3 second column
ErrMessage Detailed Error massage Script reported no errors
RemoteWallClockTime Job execution time duration 123.0
ByteSent number of bytes that are sent 1023004
ByteRecvd number of bytes that are received 1023004
ExitBySignal Is the process killed by signal? TRUE
ExitCode Exit code of the process 1
ExitSignal Signal number causing the death of the process 9

Upper Condor Generic / Lower for UNICORE only
UnicoreUsite Unicore Usite gateway FQDN and port number fujitsu.com:1234
UnicoreVsite Vsite name in the usite NaReGI
KeystoreFile keystore filename /home/foo/key
PassphraseFile passphrase filename /home/foo/passwd
UnicoreJobId handle job id fujitsu.com:1234/NaReGI/1374036929
UnicoreJobStatus Unicore job status refer to table 3 third column
UnicoreLog UNICORE log filename /var/log/unicore.log

Condor UNICORE
Job status code Job status

I (Idle) 1 CONSIGNED
PENDING
READY
EXECUTING
QUEUED
SUSPENDED

R (Running) 2 RUNNING
X (Removed) 3
C (Completed) 4 SUCCESSFUL

FAILED IN EXECUTION
KILLED
FAILED IN INCARNATION
FAILED IN CONSIGN
NEVER TAKEN

H (Held) 5 HELD

Table 3. Job status mapping.

own submission file, just like to submit an ordinary Con-
dor job. The only difference is that the users have to add
few UNICORE specific attributes in the file.

The Condor submission file is similar to the ClassAd, but
the syntax and attribute names are slightly different due to
historical reasons.

UNICORE specific ClassAd attributes are not recog-
nized by the Condor job submission tool, and will be fil-
tered out automatically. To avoid the filter, users have to put
a heading ’+’ to the non standard attribute names. These
syntactical oddities will be cleaned up in the publically-
released version. Figure 7 shows a sample submission file.

The first line ’universe = grid’ declares the job
will be handled by an external grid-aware system, and the
second line specifies that the system is UNICORE.

5.4.2. Job Submission To submit a UNICORE job, users
use the condor_submit command, that is standard job
submission command for Condor. Note that users have to
prepare their keystore and passphrase file before making a
submission.

The Schedd receives the submission file and trans-
lates it into ClassAd format, invokes the GridMan-
ager, and the GridManager invokes the UNICORE
GAHP server. The GridManager creates a job by send-

6

� � REQUEST UNICORE_JOB_CREATE 2 <c><a\ n="ClusterId"><i>1680</i><a\ n="QDate"><i>1122041597</i>
<a\ n="CompletionDate"><i>0</i><a\ n="Owner"><s>nakada</s><a\ n="JobUniverse">
<i>9</i><a\ n="JobGridType"><s>unicore</s><a\ n="TransferExecutable"><b\ v="f"/></
a><a\ n="Cmd"><s>/bin/cat</s><a\ n="User"><s>nakada@a02.aist.go.jp</s><a\ n="Env">
<s></s><a\ n="JobNotification"><i>2</i><a\ n="UserLog"><s>/usr/users/nakada/work/u
nicoreGAHP/log</s><a\ n="In"><s>the_file</s><a\ n="StreamIn"><b\ v="f"/><a\ n
="Out"><s>out.1680.0</s><a\ n="StreamOut"><b\ v="f"/><a\ n="Err"><s>err.1680.0</s>
<a\ n="StreamErr"><b\ v="f"/><a\ n="TransferFiles"><s>ONEXIT</s><a\ n="Transfe
rInput"><s>the_file</s><a\ n="UnicoreUSite"><s>ghost:4433</s><a\ n="UnicoreVSite"
><s>ghost</s><a\ n="UnicoreKeystoreFile"><s>keystore2</s><a\ n="UnicorePassphraseF
ile"><s>passphrase</s><a\ n="UnicoreUserAlias"><s>hidemoto\ nakada’s\ unicore\ forum\
e.v.\ id\ (1)</s><a\ n="Args"><s>the_file</s></c>

� � REPLY S
� � RESULT 2 S 1798031550::1680.0 null

� � REQUEST UNICORE_JOB_START 3 1798031550::1680.0
� � REPLY S
� � RESULT 3 S null

� � REQUEST UNICORE_JOB_STATUS 4 1798031550::1680.0
� � REPLY S
� � RESULT 4 S <c><s>1798031550</s></c> null

� � REQUEST UNICORE_JOB_STATUS 5 1798031550::1680.0
� � REPLY S
� � RESULT 5 S <c><s>1798031550</s><a\ n="UnicoreJobStatus"><s>SUCCESSFUL</s>

<a\ n="JobStatus"><i>4</i><a\ n="ByteSend"><r>3.200000000000000E+01</r><a\ n="
ByteRecvd"><r>3.180000000000000E+02</r><a\ n="RemoteWallClockTime"><r>1.00000000000000
0E+00</r><a\ n="ExitCode"><i>0</i><a\ n="ExitSignal"><i>0</i><a\ n="ExitBySign
al"><b\ v="f"/></c> null

� � REQUEST UNICORE_JOB_DESTROY 6 1798031550::1680.0
� � REPLY S
� � RESULT 6 S null

Figure 8. GridManager - UNICORE GAHP Server Communication.

Universe = grid
grid_type = unicore

Executable = a.out
output = tmpOut
error = tmpErr
log = tmp.log

+UnicoreUsite = fujitsu.com:1234
+UnicoreVsite = NaReGI
+KeystoreFile = /home/foo/key

+PassphraseFile = /home/foo/passwd
Queue

Figure 7. A sample submit file.

ing the UNICORE_JOB_CREATE command with the
ClassAd made from the submission file to the GAHP
server.

The UNICORE GAHP server parses the ClassAd which
is given as a argument of the create command and gets the
name of the keystore file and the passphrase file. It read the
contents and gets the user’s certificate. It will use the certifi-
cate to communicate with the UNICORE servers.

Then, the UNICORE GAHP server creates an AJO from
the ClassAd that describes the job requirements, given by
the GridManager. Each AJO is assigned a unique AJO ID
that is randomly created by the client library. Using the AJO
ID as a part, the GAHP server composes a Job ID and re-
turns it to the GridManager.

After receiving the Job ID and saving it to persistent stor-
age, the GridManager will request to start the job with the
UNICORE_JOB_START command with the Job ID. The
GAHP server will submit the corresponding AJO to the
UNICORE server.

7

5.4.3. Job Management The UNICORE GAHP server
periodically checks the status of the job. When it finds a job
is already done, it retrieves the output file from the server.

The GridManager also periodically polls job status to
the GAHP server using UNICORE_JOB_STATUS com-
mand. When it finds that a job is done, it informs the
Schedd. And then, it will destroy the job by issuing the
UNICORE_JOB_DESTROY command to the GAHP server
to release all the data and memory in the GAHP server and
UNICORE servers.

Figure 8 shows an example of the communication se-
quence between the GridManager and the UNICORE
GAHP server.

5.4.4. Recovery from Client Crash Condor can handle
the remote jobs even when the submission machine crashes.
The Schedd will be automatically rebooted and will recon-
nect to the remote servers.

The Schedd stores all the information on jobs it handles
in a database. When it is rebooted, it scans the database,
finds it has remote jobs and get the Job IDs for the jobs. It
will reinvoke the GridManager and the GridManager will
invoke the GAHP server, in turn. After the re-invocation,
the GridManager will issue the recover command for each
job, specifying the ClassAd for the job as a argument. In
the ClassAd, JobID that was used in the last incarnation is
stored, and in the JobID, a UNICORE AJO id is encoded
that is necessary to reconnect the UNICORE job.

The GAHP server gets the AJO id form the JobID and
restarts monitoring jobs in the UNICORE system.

6. Conclusion

We proposed the design of a generic interface to exter-
nal grid systems for Condor, and proved the validity of the
approach implementing a bridge to the UNICORE system
based on the design.

The following is our future work:

� Reconsider passphrase storage
In the current implementation, we store keystore
passphrases into files. This might cause security is-
sues. We have to find a better way that still allows the
GAHP server to recover from failures without user in-
teraction.

� Test the generality of the commnad set
We designed the GAHP command set so that it can
be used for any other Grid systems. We have to test
the generality by actually applying the command set to
some other grid system.

Acknowledgement

A part of this research was supported by a grant from the
Ministry of Education, Sports, Culture, Science, and Tech-
nology (MEXT) of Japan through the NAREGI (National
Research Grid Initiative) Project.

References

[1] Globus ASCII Helper Protocol.
http://www.cs.wisc.edu/condor/gahp/.

[2] Unicore. http://www.unicore.org/.
[3] I. Foster and C. Kesselman. Globus: A metacomputing infras-

tructure toolkit. In Proc. of Workshop on Environments and
Tools, SIAM., 1996.

[4] R. Raman, M. Livny, and M. Solomon. Matchmaking: Dis-
tributed resource management for high throughput comput-
ing. In Proc. of HPDC-7, 1998.

[5] M. Romberg. The unicore architecture - seamless access
to distributed resources. In Proc. of 8th IEEE Interna-
tional Symposium on High Performance Distributed Comput-
ing (HPDC8), pages 287–293, 1999.

[6] D. Thain, T. Tannenbaum, and M. Livny. Condor and the
grid. In F. Berman, G. Fox, and T. Hey, editors, Grid Com-
puting: Making the Global Infrastructure a Reality. John Wi-
ley & Sons Inc., December 2002.

[7] T. Tannenbaum and M. Litzkow. Checkpointing and Migra-
tion of UNIX Processes in the Condor Distributed Processing
System. In Dr Dobbs Journal, Februrary 1995.

8

