8th i c

on High Performance Computing
in Asia Pacific Region

GridRPC

Preliminary Study of A Task Farming API
over The GridRPC Framework

Yusuke Tanimura, Hidemoto Nakada
Yoshio Tanaka, and Satoshi Sekiguchi

National Institute of Advanced Industrial
Science and Technology (AIST)

B S —
@m.—:ar—.n- g r
P ——— _---v

® RPC mechanism for the grid computing

= A programming model for the grid applications
» The API is being standardized in the working group of GGF.
An end-user API is defined and available on two systems.
* A middleware API is being discussed.
» Reference implementation: Ninf -G and GridSolve
» Task parallel programming with well-known RPC semantics
» Easy to treat a server-side fault because of 1-N model

= ask parallel computation
Client | l:l\

for(i=0; i<N; i++){
grpc call_async() fv

R
¢ === s
e

GridRPC programming

u Atypical GridRPC program (with the end-user API)

grpc_init() » Library initialization
gprc_function_handle_init(handle, host, func) » Create a handle

for(i=0; i<N; i++) (Loop)
gprc_call_async(handle, A, B, C) » Invoke asynchronous RPC

grpc_wait_all () » Wait all RPCs are completed

> Destruct each handle
. Library finalization

grpc_function_handle_destruct()
grpc_finalize()

B Save time to develop applications using GridRPCAPI
» Machine heterogeneity is wrapped by the library.
» Data communication is wrapped by the library.
» A client program written in the standard API is portable.

b, AF e —

= GridRPC———— MPT

GridRPC v.s. MPI

resources can be dynamic static
others easy to gridify well known
existing apps. seamlessly move
to Grid
L e ey * May be dynamic using process spawning ==z

Case studies until today

Our purpose

E Tests with real science
» Scalability: Multi-sites simulation using 500 CPUs in SC’'03

» Long-time execution : Routine-based experiment on the
Asia Pacific Grid testbed for 3 months in 2004

@ The client could continue to run for a week.

» Scalability + Long-time execution
@ Simulation with 1800 CPUs for 10 hours just before SC'04
@ Simulation with 768 CPUs for 4.7 days just before SC'05

® Lessons learned
+ Needed to implement error handling, enabling heartbeat,
background recovery, and remote re-initialization
* More sophisticated API could be provided.
@ Automation in task assignment and fault recovery
@ Higher-level APIs rather than the end-user API of the GridRPC

L | W T y;_\i

» Design and implement a high-level API
(TFM API) library to develop production-
quality applications

» Give feedback to standardizing process

» Show essential functionality for implementing a high-
level API library

® Focus on Task Farming (TFM)
» Execute a single program in parallel while changing
input data and parameters
» Easy to describe these 3 points by the TFM API
@ Set input data and parameters range
® Submit tasks
@ Receive results

» s, Senamme—
@ma—ar—:g e
T

2157

Position of TFM API

Users’ requirements

® TFM API targets on client-side programming
» A user don’t have to care about remote side.
= TFM API is implemented over the GridRPC
framework to work on any GridRPC systems.

~ Information service

TFM API | / \
System specific

GridRPC API ’
protocol =
Each systelﬂs library .n-l Each systen's library

Physical resource | Client Server | Physical resource

Application

& o= s uer

® Automatic task assignment to the machine

»Scheduling by performance and stability
@ Ex. Assignment priority, duplicated task submission

= Fault-tolerant mechanism inside of the library
» Multiple retries until the task execution succeeds
»Automatic recovery of the remote program

= Simple API to program parameter generation

and result analysis for TFM application

+ Higher tools (Ex. TFM on Matblab) should be implemented
for the specific application.
@ Ex. Interactive task execution, parameter generation

» API for initializing a TFM environment

G g== SEa /.7

Proposed TFM library

When a fault happens ...

m Support automatic task assignment
» Measured execution time reflects on the next assignment.
» Support automatic tuning of task window
The window is tuned so that the total execution time will be minimum.
Users can specify MAX for limited memory capacity
» If users want, they can specify the host by ID.
m Support task completeness
» Multiple retries until the task execution succeeds
m Support duplicated submission
» One of the two same tasks will succeed.
m Support automatic recovery of the remote program
» Periodical check and recovery in background
B Support automatic initialization of the remote program

» Initialization method is saved with data in the library for the
recovery operation

b, i AF e —

» A failed task is resubmitted to another host.
u A failed server is invoked and initialized by
“Initialization method” saved in advance.

it method W Save Init.
method at
invocation

Resulpmission

dalc_method

Table of server status
foptask-assignment

—
\ E “Call Init. method

at recovery

Client
Try recovery
Server

i

< e== ST

11

Proposed TFM API (1)

Proposed TFM API (2)

® Initialization / finalization of TFM API library
intgrpcg_init(char * conf, sched_attr_t * sched, ft_attr_t* ft);
intgrpeg_fin();

® Invoke a remote program (Ninf-G server)
int grpcg_remote_init{nt num_pe, char *func, ...);
@ All programs can have the same Initialization method.
int grpcg_remote_init_n(nt server_id, int num_pe, char *func, ...);
@ Each program can have a different initialization method with an ID.

® Terminate a remote program
int grpcg_remote_finint num_pe);
intgprcg_remote_fin_n(int server_id, int_num_pe);

L3 ——
[@ PR e otk
. CETT— :

M

® Task submission
intgrpcg_submit(char * func, ...);
intgrpcg_submit_n(nt server_id, char *func, ...);
Specify a target host of the task by server_id
int grpcg_submit_r(void * ref, char *func, ...);
Set a pointer to the task for post-process
int grpcg_submit_nr(int server_id, void * ref, char * func, ...);

= Wait for task completion
intgrpcg_wait_all();
int grpcg_wait_any(int * task_id, void ** ref);

® Task cancellation
int grpcg_cancel (int task_id);

v wesss T

a2

13

Sample program using TFM API

Implementation

m Case: ED code of NAS Grid Benchmark

rc= grpcgiinit(“ server list”, &ched, NULL);

Invoke a remote

program withoutthe —p» grpcg remote_init(NUM_PE, NULL);
initialization method

for(i=0: i<NUM_TASK; i++){
grpcg_sumit(“SP.S”, “SP", ..., &, &width, &depth, ...);
Initialization parameter of SP.S

Submit a task without
specifying the host
(If a fault happens,
the task will be }
resubmitted to

anywhere else.)

=grpcg_wait_all();

grpcg_remote_fin NUM_PE);

grpeg_fin();
‘ = @m#-—:ﬁmm st ﬁf"ﬁ

® 1. Prepare common components
» Remote program (GridRPC server) management
»Task management
+ Fault detection & background recovery of servers

e 2, Implement TFM API

u Use of Middleware API of GridRPC and Ninf-G
extensions
»Argument Array (Argument Stack) API
= Remote object (Temporary storage function on remote)
» API to retrieve execution information of each RPC
» Complete non-blocking data transfer
»Invocation of multiple remote programs by one call

L . Em—
@I-HI-BI‘".&: g ¥
T

2157

15

Status mgmt. of task and server

Use of Argument Array API

m Servers are periodically sorted in the Idle pool.
= Down status is managed by each Handle Array.
» Because recovery is operated by each Handle Array

[Down 00-]
Lo e

® Provided a new API (TFM API) over standard RPC calls

» Ninf-G (Ver. 2.3) provides the Argument Stack API that will be
redefined as the Argument Array API. The Argument Array API
will be able to treatva_list.

int grpcg_submit(char * func, ...{
. Create a\ _array from va_list

va_start(ap, func);

grpc_arg_array_init_with_va_list(<handley, arg_grray, ap)
va_end(ap);
: Handle is for checking Stored arguments
arguments data type. re taken over.
Submission—}

| 00000 | J Task assignment Brecuton grpeg_i_dispatch(){
~— Afailed task is queued gr;)cicalIiargiarrayiasync(<handle>, &session_id, argiarray);
‘ » @ I::::f_re:mmed V. /LY ‘ B ! @ o Tl V. /LY
Y m
Feedback to GridRPC-WG Summary

u Some extensions like that Ninf-G provides
should be standardized in the GridRPC.
» API to retrieve execution information on remote
@The information is useful for load balancing.
«EXx. Transfer speed of arguments data, calculation cost
» Timing of data transfer
@ Complete non-blocking transfer should be provided.
+«The TFM library can implement optimized transfer.

u “Arguments copy"” function should be
provided in the Argument Array API.
»Reason 1: A user need to be careful not to rewrite the
input data for the task.
¥ Reason 2: It is difficult to implement duplicate task
submission.

- o e = -

—7h

r Designed and implemented the Task Farming
API library over the GridRPC
»Based on the end-user API that is almost standardized
+Used the Argument Array API that is still being discussed

»Used the Ninf-G extensions that is not available in other
GridRPC systems

B Revealed essential functionality to implement
a higher-level API library such as TFM library
»Some of them should be standardized in the GridRPC.
» Specially, the Argument Array API would be useful in

many cases.
» s, Senamme—
‘ @ma—ar—:g — Jj’"[

