
Design and Implementations of Ninf:

towards a Global Computing Infrastructure

Hidemoto Nakada a, Mitsuhisa Sato b, Satoshi Sekiguchi a

a Electrotechnical Lab. Tsukuba, Ibaraki, 3058568, Japan

b Real World Computing Partnership, Tsukuba, Ibaraki, 3050032, Japan

http://ninf.etl.go.jp/

Abstract

The world-wide computing infrastructure on the growing computer network tech-

nology is a leading technology to make a variety of information services accessible

through the Internet for every users from the high performance computing users

through many of personal computing users. The important feature of such services

is location transparency; information can be obtained irrespective of time or loca-

tion in virtually shared manner. In this article, we overview Ninf, an ongoing global

network-wide computing infrastructure project which allows users to access com-

putational resources including hardware, software and scienti�c data distributed

across a wide area network. Preliminary performance result on measuring software

and network overhead is shown, and that promises the future reality of world-wide

network computing.

Keywords: Distributed computing, Global computing, Scheduling

1 Introduction

Remarkable growth of computer network technology has spurred a variety of

information services accessible through the Internet. The important feature of

such services is location transparency; information can be obtained irrespec-

tive of time or location in a virtually shared manner. However, most existing

global network services such as e-mail, �le archives, and the WWW, are lim-

ited to merely sharing data resources. The global network could be far better

utilized, embodying the potential to provide a computational environment to

share computational resources including CPUs and disk storage. The coming

of gigabit information super-highway will further enhance the vision of world-

wide global computing resources, being able to tap into powers of enormous

numbers of computers with idle computation cycles.

Preprint submitted to Elsevier Science 2 October 1998

From the high performance computing perspective, the challenging applica-

tion programs require the ability to exploit diverse, physically distributed

resources, such as access to supercomputers, large databases, storage devices,

visualization devices, and sensing devices as well. These applications are not

able to run using resources within a single computer center, thus the wide

variety use of the meta-computing system with heterogeneous and dynamic

nature, which is being built on the world-wide computing infrastructure, is

becoming much more important.

A few systems are proposed for such computing system: Legion [1] is a project

for constructing the nationwide virtual computer comprised of many super-

computers and workstations. NetSolve [2] provides an easy-to-use program-

ming interface similar to ours and has a scheduling module called Agent. The

Remote Computation System (RCS) [3] is a remote procedure call facility that

provides uniform access to remote computers ranging from high-end worksta-

tions to supercomputers. The Globus [4] is a toolkit which intended to achieve

a vertically integrated treatment of application, middle-ware, and network.

As an infrastructure for world-wide global computing in scienti�c computa-

tion, we are currently pursuing the Ninf (Network based Information Library

for high performance computing) project [5]. Our goal is to develop a plat-

form for global scienti�c computing with computational resources distributed

in a world-wide global network. This article describes the motivation of the

Ninf, its components, the underlying technologies that support such global

computing, and the current status of the project.

2 Overview of the Ninf System

2.1 Design Concept

The basic concept of the Ninf system is to support client-server based com-

puting. The computational resources are available as the Ninf remote libraries

at remote computation hosts. The remote libraries can be called through the

global network from a programmer's client program written in existing lan-

guages such as Fortran, C, or C++. Parameters, including large arrays, are

e�ciently marshaled and sent to the Ninf server on a remote host, which in

turn executes the requested libraries and sends back the results. The Ninf re-

mote procedure call (RPC) is designed to provide programming interface that

will be very familiar to the programmers of existing languages. The program-

mer can build global computing systems by using the Ninf remote libraries as

its components, without being aware of complexities and hassles of network

programming.

2

The bene�ts of Ninf are as follows:

{ A client can execute the most time-consuming part of one's program in mul-

tiple, remote high-performance computers, such as vector supercomputers

and MPPs, without any requirement for special hardware or operating sys-

tems. If such supercomputers are reachable via a high speed network, the

application will naturally run considerably faster. It also provides uniform

access to a variety of supercomputers.

{ The Ninf programming interface is designed to be extremely easy-to-use and

familiar-looking for programmers of existing languages such as FORTRAN,

C and C++. The user can call the remote libraries without any knowledge

of the network programming, and easily convert his existing applications

that already use popular numerical libraries such as LAPACK.

{ The Ninf RPC can also be asynchronous and automatic: for parallel appli-

cations, a Ninf metaserver maintains the information of Ninf servers in the

network, and automatically allocates remote library calls dynamically on

appropriate servers for load balancing, or scheduling. Ninf also provides an

API for aggregate invocation of multiple remote computation.

{ The Ninf network database server provides query on accurate constant

database needed in scienti�c computation, such as important constants of

physics and chemistry. By doing so, the user is freed from the burdens and

mistakes of inputting accurate constant data from printed charts.

From the user's perspective, Ninf o�ers yet another way to share resources

over a global network. On the other hand, there are already various network

infrastructures and tools already in use, and one might ask would another

infrastructure be needed; for example, one could claim the extreme that, one

could use existing �le transfer services such as ftp to remotely obtain numer-

ical libraries, compile on his local machine, and execute the program there.

Aside from the issue of having a supercomputer locally on hand, there are

many other advantages to Ninf in this case | security and proprietary issues

naturally are obvious topics; there are other practical issues of expending the

e�orts of fetching, compiling, and maintaining code in heterogeneous comput-

ing environments. Ninf allows reduction of maintenance costs by concentrating

the e�orts of high-quality, well-maintained libraries on compute servers and

not on each machine. Thus, even for slower networks where there are no speed

advantages to be gained, Ninf is still bene�cial in this regard.

2.2 The Ninf System Architecture

The basic Ninf system employs a client-server model. The server machine

and a client may be connected via a local area network or over the Internet.

Machines may be heterogeneous: data in communication is translated into the

3

common network data format.

A Ninf server process runs on the Ninf computation server host. The Ninf

remote libraries are implemented as executable programs, which contain net-

work stub routine as its main routine, and managed by the server process. We

call such executable programs Ninf executables (programs). When the library

is called by a client program, the Ninf server searches the Ninf executables

associated with its name, and executes the found executable, setting up an

appropriate communication with the client. The stub routine handles the com-

munication to the Ninf server and its client, including argument marshaling.

The underlying executable can be written in any existing scienti�c languages

such as Fortran, C, etc., as long as it can be executed in the host.

A library provider, who provides the numerical library and computational re-

source to the network at large, prepares the Ninf executables by (1) writing the

necessary interface description of each library function in Ninf IDL (Interface

Description Language), (2) running the Ninf IDL compiler, which emits the

necessary header �les and stub code, (3) compiling the library with the com-

piler for the programming language the library is written in, and, (4) linking

with the Ninf RPC libraries, �nally, (5) registering them with the Ninf server

running on his host. After these steps, anyone in the network can use the

libraries by the Ninf RPC in a transparent manner. Some existing libraries,

such as LAPACK, have already been 'Nin�ed' in this manner.

In the current implementation, the communication between a client and the

server is achieved by means of standard TCP/IP connection to ensure reliable

communication between processes. In a heterogeneous environment, Ninf uses

the Sun XDR data format as a default protocol. Also, clients can specify call

back functions on the client side for various purposes, such as interactive data

visualization, I/O of data, etc.

2.3 The Programming Interface

Ninf_call() is the sole client interface to the Ninf compute and database

servers. In order to illustrate the programming interface with an example, let

us consider a simple matrix multiply routine in a C program with the following

interface:

double A[N][N],B[N][N],C[N][N];

.... /* declaration */

dmmul(N,A,B,C);

/* calls matrix multiply, C=A*B */

When the dmmul routine is available on a Ninf server, the client program can

4

call the remote library using Ninf_call, in the following manner:

Ninf_call("dmmul",N,A,B,C);

/* call remote Ninf library on server */

Here, dmmul is the name of library registered as a Ninf executable on a server,

and A,B,C,N are the same arguments. As we see here, the client user only needs

to specify the name of the function as if he were making a local function call;

Ninf_call() automatically determines the function arity and the type of each

argument, appropriately marshals the arguments, makes the remote call to the

server, obtains the results, places the results in the appropriate argument, and

returns to the client. In this way, the Ninf RPC is designed to give the users

an illusion that arguments are shared between the client and the server. Note

that the physical location of the Ninf server is not speci�ed here. The server

is allocated by the scheduler.

To realize such simplicity in the client programming interface, we designed

Ninf RPC so that client function call obtains all the interface information re-

garding the called library function at runtime from the server. Although this

will cost an extra network round trip time, we judged that typical scienti�c ap-

plications are both compute and data intensive such that the overhead should

be small enough. Moreover, once a function is called, interface information

of the function is cached in the client program, allowing to skip the inter-

face obtaining phase for subsequent invocation of the function. The interface

information includes the number of parameters, these types and sizes and ac-

cess modes of arguments (read or write). Using these information, Ninf RPC

automatically performs argument marshaling, and generates the sequence of

sending and receiving data from/to the Ninf server.

As shown in Figure 1, the client function call requests the interface infor-

mation of the calling function to the Ninf server, which in turn returns the

registered Ninf executable interface information to the client. The client li-

brary then interprets and marshals the arguments on the stack according to

the supplied information. For variable-sized array arguments, the IDL must

specify an expression that includes the input scalar arguments whereby the

size of the arrays can be computed. This design is in contrast to traditional

RPCs, such as Sun's RPC[6] or CORBA[7], where stub generation has to be

done on the client side at compile time. As a result of dynamic interface acqui-

sition, Ninf RPC does not require such compile-time activities at all, relieving

the users from any code maintenance.

Ninf computational server has an ability to access Web servers directly, en-

abling users to specify data on Web as arguments for mathematical libraries

registered with Ninf. Just using URL string as the data, users can use the

data located with the given URL. This code below uses data on the Web as

5

 Ninf
Procedure

Stub program

 Ninf
Executable

 Client
Program

Client Library

1.Interface request
2.Interface

3.Argument
4.Result

Ninf Server

Fig. 1. Ninf RPC

the second argument matrix.

Ninf_call("dmmul",N, A, "http://.../..", C)

The Ninf client library automatically detects that the argument speci�es an

URL, and sends the URL to the server. The Ninf server receives the URL and

connects to the Web server, gets the speci�ed data by issuing the HTTP GET

command, stores it in memory, and then invokes the numerical routine.

The users can also store there data on Web servers 1 . Ninf executable can

upload data directly to Web servers. This facility can be used, for example, to

snapshot the intermediate results of the server computation on a Web server

nearby the Ninf computational server.

The Ninf RPC may also be invoked asynchronously to exploit network-wide

parallelism. The API Ninf call async is almost equivalent to the ordinary

Ninf call, but it does not wait for the completion of the request, instead,

it returns with a request ID, immediately, With the ID, programmers can

wait or poll the reply for the request. It is possible to issue the request to a

Ninf server, continue with the other computation. Multiple RPC requests to

di�erent servers are also possible. For this reason, the asynchronous Ninf RPC

is an important feature for parallel programming. There are several APIs for

waiting the reply, enabling programmers to wait an arbitrary set of NinfCalls.

Ninf also provides aggregate call interface, which schedules user speci�ed code

block, called transaction as one scheduling unit. The block of code surrounded

by Ninf transaction begin and Ninf transaction end are not executed immedi-

ately; rather, at the end of the code block, the metaserver schedules the com-

putation to multiple computational servers accordingly. When all the com-

putations are complete, the metaserver returns the result to the client. This

facility is useful for the parallel execution of the problems that can be easily

1 It uses http PUT command. The PUT command is optional and public Web

servers often do not implement it because of security.

6

divided into several sub problems, such as, monte-calro simulation or parame-

ter survey computation. The transaction also can be used for macro-data
ow

execution. In the transaction, data-dependencies between Ninf calls are auto-

matically detected, and the metaserver takes it into account for scheduling.

As an example, consider to add up four matrices A, B, C, and D, with the

result in G:

Ninf_transaction_begin();

Ninf_call("madd", n, A, B, E);

Ninf_call("madd", n, C, D, F);

Ninf_call("madd", n, E, F, G);

Ninf_transaction_end();

As the addition of A, B and C, D could be executed in parallel, they are

executed in parallel, while the addition of the resulting E, F are executed

after their termination.

Ninf RPC also supports a call-back functional argument to communicate with

the client during executing the RPC in a server. A Ninf library routine can

take functional arguments to call user-supplied routines from the Ninf ex-

ecutable. Consider a scienti�c simulation as an application of the Ninf. A

typical simulation program initializes the state, and updates the state to dis-

play or records it at every certain time steps. The call-back facility is useful

to call user-supplied routines to display or record data at each time-step while

keeping internal state in a server.

Since the Ninf client programming interface is designed to be as language

independent as possible, the Ninf client can be written in a variety of pro-

gramming languages. We have already designed and implemented the client

Ninf_call functions for C, FORTRAN, Java. Adding to it, we provide a sub

API for API implementation. It is possible to implement a client interface to

Ninf for any language, so long as it supports standard foreign function inter-

face to C programs. However, it is not a trivial job to implement the Ninf API

on a language that employs an array representation that is totally di�erent

from C, such as Lisp. In order to make implementation of Ninf API easy, we

provide sub-API called Ninf CIM(Common Interface Module). It requires API

implementers to provide a few basic routines, called traversers. The routines

traverse on the language native data structure and set/get data at that posi-

tion. Ninf cim main(), CIM version of Ninf call(), marshals / unmarshals data

calling these traversers. We already implemented APIs for Excel, Mathematica

and Lisp using the CIM.

7

2.4 Ninf IDL (Interface Description Language)

The Ninf library provider describes the interface of the library function in

Ninf IDL to register his library function into the Ninf server. Since the Ninf

system is designed for numerical applications, the supported data type in

Ninf is tailored for such a purpose; for example, the data types are limited

to scalars and their multi-dimensional arrays. On the other hand, there are

special provisions in the IDL for numerical applications, such as support for

expressions involving input arguments to compute array size, designation of

temporary array arguments that need to be allocated on the server side but

not transferred, etc.

For example, interface description for the matrix multiply given in the previous

section is:

Define dmmul(long mode_in int N,

mode_in double A[N][N], mode_in double B[N][N],

mode_out double C[N][N])

"... description ..."

Required "libxxx.o"

/* specify library required by this routine. */

Calls "C" dmmul(N,A,B,C);

/* Use C calling convention. */

where the access speci�ers, mode_in and mode_out, specify whether the ar-

gument is read or written. To specify the size of each argument, the other

in_mode arguments can be used to form a size expression. In this example,

the value of N is referenced to calculate the size of the array arguments A,

B, C. In addition to the interface de�nition of the library function, the IDL

description contains the information needed to compile and link the libraries.

Ninf interface generator

Ninf Interface
Description File

ninf_gen

xxx.idl

_stub_foo.c
_stub_goo.c

_stub_bar.c
module.mak

_stub_foo
_stub_goo

_stub_bar

Libraries
xxx.a

stub programs

Ninf_call("foo",...)
Ninf_call("goo",...)

Ninf_call("bar",....)

Ninf clients

Ninf Server

stub main programs

Fig. 2. Ninf interface generator

8

As illustrated in Fig. 2, the interface description is compiled by the Ninf inter-

face generator to generate a stub program for each library function described

in its interface information. The interface generator also automatically outputs

a make�le with which the Ninf executables can be created by linking the stub

programs and library functions. The interface description can also include the

textual information, which is used to create manual pages automatically for

the library functions. The remote users can browse the available library func-

tions in the server, its interface, and the other information generated by the

interface generator through a Web browser interface.

3 Scheduling for Global Computing

One of the biggest research issue for global computing is scheduling, i.e., how

to achieve e�cient usage of computing resources. In this section, we show

our scheduling framework, Ninf metaserver , which provides scheduler and

resource monitor. We also provide our simulation model, which will be used

to pursue the optimal scheduling algorithm.

3.1 Requirements for global scheduler

A global scheduler must gather globally distributed information on compu-

tational and communication resource utilization. Based on the collected in-

formation, which only represents the past snapshot information of the entire

system, the scheduler must also make prediction on the current status of re-

source usage. To facilitate such prediction, all the collected information must

be maintained in a global database manager.

To be more speci�c, a scheduler for a global computing system will consist of

the following modules:

{ Load monitor for computing resources (i.e. computation server node),

{ Throughput monitor for networks,

{ Resource information database manager,

{ Resource status predictor

{ Resource Scheduler (embodying some scheduling algorithm)

Note that, for the throughput monitor, throughput among the client and the

computing nodes will have to be measured by each client, as under most

WAN settings including the current Internet, throughput between any two

nodes is di�cult to interpolate from other throughput information. On the

other hand, load monitor can be performed by just one representative node

9

over a collection of computing server nodes.

Monitors report status to the resource information database manager period-

ically; based on the information in the database, the resource status predictor

predict the current and the future status of the resources. Then, the scheduler

combines the information of the database and the predictor, and allocates a

proper computing node for each request.

3.2 Ninf MetaServer

Accounting the above issues, we have implemented a prototype scheduling

framework called the Metaserver. The metaserver consists of following mod-

ules;

{ Load monitor for computing re-

source

{ Client proxy

{ Resource Information Database

Manager

{ Resource Scheduler

Resource Information
Database Manager

Internet

Scheduler Load
Manager

Client

Client
Proxy

Server

Server

1
1

15

4
53

2
2

6

Fig. 3. Ninf MetaServer

The client proxy has two roles. Primary, it's a throughput monitor for network.

It monitors throughput on behalf of the entire client site, reducing the cost

of measuring the throughput from each client in the site. It also acts as the

proxy server for �rewall protected networks.

The metaserver system functions in the following way (Fig. 3):

(i) The load monitor monitors the computing servers' load status, and stores

it to the resource information database.

(ii) The client proxy periodically monitors the communication status (such

as network load) to servers on behalf of the client, and maintains the

results internally.

(iii) The client sends a scheduling request of a Ninf invocation to the client

proxy.

(iv) The client proxy, in turn, issues a query to the scheduler, attaching its

internal communication status information between it and the servers.

(v) The scheduler obtains the computing servers' load information from the

resource information database and decides the most appropriate server for

10

the invocation depending on the characteristics of the requested function

(usually the server which would yield the best response time, while main-

taining reasonable overall system throughput), and informs the Client

proxy of the server identity.

(vi) The client proxy forwards the request to the allocated server.

All of the modules are implemented in Java, and the core scheduling modules

are implemented as being "pluggable", allowing the scheduling policy to be

replaced on the
y via network protocols.

3.3 Simulation model for global computing

There are several work in scheduling for global computing, include AppLeS[8],

Prophet[9] and Condor [10]. However, these systems do not prove the valid-

ity of their scheduling algorithms. Experiments on an actual system are not

su�cient to discuss the general performance of these algorithms. Rather, an

appropriate performance evaluation model, which can represent various global

computing systems and their behavior, would be required. To study validity

of scheduling algorithms on various environments, we propose a simulation

model based on queuing model.

Fig. 4 gives the overview of our proposed simulation model of a typical RPC-

based global computing system. In the �gure, the clients A{A', B{B' and C{C'

are the same clients acting as senders and receivers.

Client A
Server A

Server B

Server C

Client B

Client C

Client B’

Client C’

Client A’
Qns1

Qns2

Qns3

Qns4

Qnr1

Qnr2

Qnr3

Qnr4

Qs1

Qs2

Qs3

�ns �ns�s �nr�s �nr

Fig. 4. A Simulation Model of Global Computing System

In the model, invocation and argument communication from the client to the

server, processing at the server, and returning of the reply from the server to

the client, are modeled as queues Q
nsi
, Q

nri
, and Q

si
, respectively. �

ns
, �

nr
are

arrival rates of requests in the network other than Ninf call ; in other words,

they model congestion and delays encountered in a wide-area network. �
ns
,

11

�
nr

are service rate of the queues, i.e., they e�ectively represent the network

bandwidth, and they follow exponential distribution. �
s
, �

s
similarly represent

degree of server congestion, and server processing power.

A simulator based on this model is already implemented in Java, and we

con�rmed the validity of the simulation model comparing the results of virtual

simulations and actual experiments. We are pursuing the optimal scheduling

algorithm using the simulator and the metaserver.

4 Current Topics

4.1 Performance Evaluation using the Ninf RPC

Here, we give some preliminary evaluations results. As we already reported

more precise evaluation result[11], we concentrate simple single client - single

server case, here. As a benchmark program, we employ Linpack which re-

quires extensive communication to ship dense matrices over the network. We

employed SuperSPARC(40MHz) and UltraSPARC(143MHz) as the clients,

and DEC Alpha(333MHz) and Cray J90(with 4CPUs) as the servers.

Fig. 5 shows the results of SuperSPARC and UltraSPARC clients. The hor-

izontal axis indicates the size of the matrix, and the vertical axis indicates

the performance of n Ninf call and Local in M
ops. The performance of Lo-

cal remains relatively constant across for both SPARCs. On the other hand,

Ninf call performance improves steadily as n increases, and for both SPARCs,

exhibited superior performance to Local at approximately n = 200-400.

0

50

100

150

200

250

0 200 400 600 800 1000 1200 1400 1600

P
er

fo
rm

an
ce

 [M
flo

ps
]

Matrix size

UltraSPARC-J90
SuperSPARC-J90

UltraSPARC-Alpha
SuperSPARC-Alpha

SuperSPARC-UltraSPARC
Local: UltraSPARC

Local: SuperSPARC

Fig. 5. Ninf call performance

12

4.2 Ninf-NetSolve Adapter

NetSolve[2] is a global computing system being developed at Univ. of Ten-

nessee. The functionality and the architecture of NetSolve are similar to Ninf:

however, there is a great deal of di�erence in the protocols and some of the

system APIs. By interfacing Ninf and NetSolve, we expect that not only it

will bene�t the users of both systems due to mutual interoperability, but also

we expect that by comparing the two systems and their protocols, we could

distill the advantageous characteristics of each, and design new systems and

standard protocols. In fact, we are already in the process of proposing a new

protocol based on the experiences gained from the adopters. Here, we describe

how the adapters work, and their performance.

For brevity, we describe the implementation of the Ninf ! NetSolve adapter:

the inverse adapter is similar in principle. The adapter acts as a computational

server on the Ninf side, and acts as a client on the NetSolve side. It is written

in Java, and has the following roles:

{ Conversion of NetSolve interface information to Ninf interface information

| Both systems make a two-phase call to the server, where the interface

information of the callee library is sent to the client.

{ Network data transfer format conversion| The network data format di�ers

considerably between Ninf and NetSolve.

We are now under negotiation with NetSolve people to standardize a data

transfer protocol, which can be used by not only our systems but also other

metacomputing systems.

4.3 GUI based client for Ninf

Interactive user interfaces are often very attractive for real-world applications.

NinfCalc+ is a simple WWW-based Ninf interface. which is implemented as a

Java applet and allows the users easily to handle linear system solver, eigen-

value problem, and other matrix operation with click and quick operation.

Each of the solver routines behind the NinfCalc+ is provided as a Ninf Exe-

cutable being called through Ninfcall.

NinfCalc+ utilizes direct web access facility, i.e., it does not store matrices in

itself, uses Web servers as storages, instead. As it performs calculation control

only, it does not require broad band-width between Ninf server and itself. It

can control huge matrix calculation interactively even from your home via thin

phone line.

13

Fig. 6. NinfCalc+

5 Future Plans

In this article, we described our global computing infrastructure: Ninf, and

showed preliminary performance evaluation results. Since our objective is for

Ninf to be a global service infrastructure available for free for a wide variety

of scienti�c and engineering use, involving not only high performance but also

quality-of-use, there are still numerous research issues to be addressed:

{ Authentication and accounting: Although Ninf itself will be available for

free, institutions will naturally want to establish its own authentication and

accounting policies.

{ Security: Security is naturally important, especially since each Ninf server

will act as computation server and not mere database server. Provision of

entrusted Ninf server node, as well as encryption, will be an important issue

for future evolution of Ninf.

{ Fault tolerance: Since global network is not fault-safe, checkpointing and

recovery facility will be needed for fault tolerance. We are currently plan-

ning to extend the Ninf transaction facilities into full-
edged recoverable

transactions; however, doing so without sacri�cing computation speed or

wasting too many resources is not an easy issue.

{ Scheduling: Although we already have the
exible scheduling framework:

Metaserver, the scheduling and resource prediction algorithm is still an open

issue. We will pursue the issue utilizing our simulator.

These and other issues will be developed in accordance with advancements

in other global networking standards, and other e�orts on global network

computing.

14

Acknowledgment

We would like to thank other members of the Ninf group, especially Satoshi

Matsuoka(Tokyo Institute of Technology), Umpei Nagashima (National Insti-

tute of Materials and Chemical Research), and Atsuko Takefusa (Ochanomizu

University) for their discussions and encouragements.

References

[1] Andrew S. Grimshaw, William A. Wulf, James C. French, Alfred C. Weaver,

and Paul F. Reynolds Jr. Legion: The next logincal step toward a natiowide

virtual computer. CS 94-21, University of Virginia, 1994.

[2] Henri Casanova and Jack Dongarra. Netsolve: A network server for solving

computational science problems. In Proceedings of Super Computing '96, 1996.

[3] Peter Arbenz, Walter Gander, and Michael Oettli. The remote computation

system. Technical Report 245, ETH, 1996.

[4] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit.

In Proc. of Workshop on Environments and Tools, SIAM., 1996.

[5] Mitsuhisa Sato, Hidemoto Nakada, Satoshi Sekiguchi, Satoshi Matsuoka, Umpei

Nagashima, and Hiromitsu Takagi. Ninf: A Network based Information Library

for a Global World-Wide Computing Infrastracture. In Proc. of HPCN'97

(LNCS-1225), pages 491{502, 1997.

[6] Sun Microsystems, Inc. RPC: Remote procedure call protocol speci�cation

version 2. RFC 1057, June 1988.

[7] OMG. The Common Object Request Broker: Architecture and Speci�cation.

Revision 2.0. OMG Document, 1995.

[8] Fran Berman, Rich Wolski, Silvia Figueira Jennifer Schopf, and Gary Shao.

Application-level scheduling on distributed heterogeneous networks. In

Proceedings of Super Computing '96, 1996.

[9] J.B. Weissman and X.Zhao. Scheduling parallel applications in distributed

networks. In Journal of Cluster Computing, 1997.

[10] R. Raman, M. Livny, and M. Solomon. Matchmaking: Distributed resource

management for high throughput computing. In Submitted to HPDC'98, 1998.

[11] A. Takefusa, S. Matsuoka, H. Ogawa, H. Nakada, H. Takagi, M. Sato,

S. Sekiguchi, and U. Nagashima. Multi-client lan/wan performance analysis

of ninf: a high-performance global computing system. In Supercomputing '97,

1997.

15

