
Design issues of Network Enabled Server

Systems for the Grid

Satoshi Matsuoka,1;2? Hidemoto Nakada,3??

Mitsuhisa Sato4??? and Satoshi Sekiguchi3y

1 Tokyo Institute of Technology, Tokyo, Japan
2 Japan Science and Technology Corporation, Tokyo, Japan

3 Electrotechnical Laboratory, Tsukuba Ibaraki, Japan
4 Real World Computing Partnership, Tsukuba Ibaraki, Japan

Abstract. Network Enabled Server is considered to be a good candi-

date as a viable Grid middleware, o�ering an easy-to-use programming

model. This paper clari�es design issues of Network Enabled Server sys-

tems and discusses possible choices, and their implications, namely those

concerning connection methodology, protocol command representation,

security methods, etc. Based on the issues, we have designed and im-

plemented new Ninf system v.2.0. For each design decision we describe

the rationale and the details of the implementation as dictated by the

choices. We hope that the paper serves as a design guideline for future

NES systems for the Grid.

1 Introduction

A Network Enabled Server System(NES) is an RPC-style Grid system where
a client requests the service of a task to a server. There are several systems
that adopt this as the basic model of computation, such as our Ninf system[1],
Netsolve[2], Nimrod[3], Punch[4], and Grid e�orts utilizing CORBA[5, 6, 7].

NES systems provides easy-to-use, intuitive, and somewhat restricted user
and programming interface, This allows the potential users of Grid systems to
easily make his applications \Grid enabled", lowering the threshold of accep-

tance. Thus, we deem it as one of the important abstractions to be layered on
top of lower-level Grid services such as Globus[8] or Legion[9].

Since 1995, we have been conducting the Ninf project, whose goal has been
to construct a powerful and 
exible NES system [10, 11], and have investigat-
ed the utility of such systems through various application and performance
experiments[12]. There, we have gained precious experience on the necessary
technical aspects of NES systems which distinguishes them from conventional
RPC systems such as CORBA, as well as various tradeo�s involved in the de-
sign of such systems[13]. Based on such observations, we have redesigned and
reimplemented version 2.0 of the Ninf system from scratch.

? matsu@is.titech.ac.jp
?? nakada@etl.go.jp
??? msato@trc.rwcp.or.jp

y sekiguchi@etl.go.jp



ServerServer

ServerServer

ClientClient

SchedulerScheduler MonitorMonitor

DB

Manager

DB

Manager

Server inquiry

(Network info)

Suitable Server

Resource

Monitoring

Store resource status

Resource

Monitoring

Store resource statusObtain Server infoObtain Server info

Fig. 1. General Architecture of NES Systems

The purpose of this paper is to discuss the notable technical points which led
to the design decisions made for Ninf v.2.0. In particular, for the latter half of
the paper we focus on the security issues, which is mostly lacking in the current
generation of NES systems.

2 General Overview of NES Systems

In general, NES systems consists of the following components: (Figure 1)。

{ Clients: Requests execution of grid-enabled libraries and/or applications to
the server.

{ Servers: Receives request from clients, and executes the grid-enabled li-
braries and/or applications on clients' behalf.

{ Scheduler: Selects amongst multiple servers for execution according to the
information obtained from the resource database.

{ Monitors: Monitors the status of various resources, such as computing re-
source, communication resource, etc., and registers the results in the resource
database.

{ Resource Database: Stores and maintains the status of monitored re-
sources.

The Monitors periodically \monitor" the status of resources such as the serv-
er, network, etc., and registers the results in the Resource Database. The users of
Grid systems modi�es his applications to utilize the servers with the use of client
APIs, or tools that have been constructed using the client APIs. The Client in-
quires the Scheduler for an appropriate Server. The Scheduler, in turn, acquires
the info on computing resources, and selects the appropriate server according to
some scheduling algorithm, and returns the selection to the Client. The Client
then remotely invokes the library/application on the selected server by send-
ing the appropriate argument data. The server performs the computation, and
returns the result data to the client.



2.1 Design Issues in NES Systems

There are several design issues regarding the construction of NES systems, in-
cluding the connection methods of client and servers, communication protocols,
and security. Moreover, there is an issue of how we make the system open to
future extensions.

Client-Server Connection Methodologies The client must �rst establish a
connection with the selected server. The sub-issues involve 1) continuous con-
nection versus connection-by-necessity, and 2) usage of proxies.

Continuous Connection versus Connection-by-Necessity: Continuous connection
maintains connection between the server and the client during the time server is
performing the computation. Contrastingly, Connection-by-Necessity makes �ne-
grain connection/disconnection between the client and the server on demand.

Continuous connection is typically employed for standard RPC implemen-
tations; it is easy to implement under the current TCP/IP socket APIs, and
furthermore, allows easy detection of server faults via stream disconnection. The
drawback is the restriction on how many parallel tasks that can be invoked by a
client. Since the connection to the server must be maintained, the client process
is requires more �le descriptors than the number of parallel tasks being invoked.
However, since the number of �le descriptors per process is restricted for most
OSes, this limits the number of parallel tasks. Such has not been a problem for
traditional RPCs, since most transactions are short-lived, and/or the number of
connections were small since the user tasks are sequential.

Moreover, continuous connection requires the client to constantly be on-line,
without any interruption in the communication. Thus, the client cannot go o�-
line, neither deliberately nor by accident; even a momentary failure in the com-
munication will cause a fault. This again is a restriction, since some Grid-enabled
libraries may take hours or even days to compute.

By contrast, in Ninf v.2.0 we have adopted Connection-by-Necessity. Basi-
cally, when the client makes an RPC request to the server, it disconnects once
the necessary argument data had been sent. Once the server �nishes the com-
putation, it re-establishes a new connection with the client, and sends back the
result. This overcomes the restriction of the Continuous Connection, but a) the
protocol becomes more complex, due to the requirement of server-initiated and
secure connection re-establishment, b) there need to be an alternative method of
detecting server faults, and c) performance may su�er due to connection costs.

Direct Connection versus Proxy-based Connection Another concern is whether
to connect the client and the server directly, or assume a dedicated, mediating
proxies, for various purposes including connection maintenance, performance
monitoring, and �rewall circumvention.

The \old" Ninf system (up to v.1.2.) employed proxy-mediated connection,
for the purpose of simplifying the client libraries. All tra�c was mediated by
the proxy; in fact, communication with the Scheduler for server selection was



performed by the proxy and not by the client itself. On the other hand, routing
the communication through the proxy will result in performance overhead, which
is of particular concern for Grid systems since communication of large bulk of
data is typical.

Communication Protocol Commands for Grid RPC Communication Pro-
tocol Commands, or simply Protocol Commands are a set of commands that are
used to govern the communication protocol between the client and the server.

They can be largely categorized into binary formats and text-based formats.
Binary formats allow easy and lightweight parsing of command sequences,

but are di�cult to structure, debug and extend. Contrastingly, well-designed
text-based formats are well-structured, easy to understand and extent, but are
less e�cient and require more software e�orts to parse.

Although traditionally text-based commands for communication protocols
were typically simple, involving little structure such as S-expressions, there is
a recent trend to employ XML for such purpose. Although XML requires more
e�orts on the software side for parsing etc., we can assign schema in a standard
way using DTD. Since command overhead can be amortized over relative large
data transfer, we believe XML is a viable option given its proliferation as well
as availability of standard tools.

Security Mechanism Security is by all means an important part of any Grid
system. However, there several options for security, depending on the operating
environment of the system.

If the operating environment is totally local within some administrative do-
main, where all the participants can be trusted, we can merely do away with
security. In a slightly more wide-area and well-administered environment, such
as within a University campus, it su�ces to restrict access based on, say, client
IP address. On the other hand, if global usage is assumed, then by all means we
must guard against malicious users, and thus require authentication based on
encryption. Examples are Kerberos, which employs the symmetrical key tech-
nology, and SSL, which utilizes the public key algorithm.

System Openness and Interoperability with Other Grid Systems One
important design choice is how much we make the system open to customiza-
tion, especially with respect to other, more general Grid software infrastruc-
ture, and/or Grid component with some speci�c function. More concretely, Grid
toolkits such as Globus provide low-level communication layer, security layer, di-
rectory service, heartbeat monitoring, etc. Components such as NWS(Network
Weather Service[14]) provides stable monitoring and prediction services for mea-
suring resources on the Grid, such as node CPU load and network communica-
tion performance. Conventional components which had initially not intended as
a Grid services could be incorporated as well, such as LDAP, which provides a
standard directory service API; Globus employs LDAP directly with its MD-
S(Metacomputing Directory Service), providing a Grid directory service.



By using such existing subsystems and components, we can directly utilize the
functionalities which had been tried and tested, and also subject to independent
improvement. On the other hand, because such subsystems are designed for
generality, they have larger footprint, and could be tougher to manage. Moreover

the supported platform would be the intersection of the platforms supported by
individual subsystems.

3 Design and Implementation of the New Ninf System

3.1 Conceptual Design Decision Overview

We designed and implemented a new version of the Ninf system (Ninf version
2.0) with the abovementioned design issues in mind. The new system is designed
to be 
exible and extensible, with interoperability with existing Internet and
Grid subsystems in mind. Because NES systems typically involve tasks where
computation is dominant, we made design decisions that gave precedence to in-
teroperability and 
exibility over possible communication overhead if such could
be amortized.

Client-Server Connections In order to accommodate multiple, fault-tolerant,
long-running calls in Grid Environments, we adopted for connection-by-necessity
over continuous connections. We have also decided to employ proxy-based con-
nections in order to simplify client structure. However, in order to avoid band-
width bottlenecks, proxies only intervene on command negotiations between the
client and server; when the actual arguments of the remote call is being trans-
ferred, the client and the server communicate directly, unless a �rewall must be
crossed.

Communication Protocol Commands For 
exibility, extensibility, and in-
teroperability, we decided to adopt the usage of XML-based text commands.
In the latter sections we present an overview of the DTD schema for numerical
RPCs. Free parsers for C and Java are available, which simpli�ed our implemen-
tation.

Security Mechanism To allow Ninf to be used in a global Grid environment,
we opted to construct a Globus-like, SSL-based authentication and authorization
layer, which allows delegation of authentication along a security chain. Kerberos
was an obvious alternative, but SSL was becoming a commercial standard, and
multiple free library implementations in C and Java are available.

System Openness and Interoperability with Other Grid Systems This
was the most di�cult decision, since advantages and disadvantages of employing
existing Grid components could be strongly argued both ways. As a compromise,
we have decided to provide default implementations of all our basic submodules;



ClientClient

ServerServer

ExecutableExecutable

ProxyProxy

SchedulerScheduler

DB 

Manager

DB 

Manager

Network

Monitor

Network

Monitor Server

Monitor

Server

Monitor

Fault 

Manager

Fault 

Manager

Data 

Storage

Data 

Storage

Invocation

Request

Monitor Monitor

Report

Report
Report

Invocation

Request Invoke

Data

Transfer

Data

Transfer

query
Answer

Answerquery

Fig. 2. Overview of the New Ninf System

however, we have designed them to have well-de�ned interfaces, to be plug-
gable with existing modules in operating environments where such services are
already available. For example, although the default implementation of the re-
source database lookup service has its own LDAP lookup feature, it could also
directly utilized Globus MDS services where they are available.

3.2 Overview of the New Ninf System V.2.0

The new Ninf system v.2.0 is composed of the following subsystems(Figure 2)。

{ Client

A user-side component which requests (parts of) computing to be done on
remote servers in the Grid. The client is \thin" in a sense that as little
information as possible is retained on the client side; for example IDL of the
remote call is not maintained by the client, but rather automatically shipped
on demand from the server.

{ Server

Receives remote compute requests from the clients and invokes the appro-
priate executable. The server might act as a backend for invoking paral-
lelized libraries on multiple compute nodes, such as a library written in
C/Fortran+MPI served by a Cluster.

{ Proxy

Communicates with a Scheduler on behalf of the Client, and decides upon
which server to invoke the remote computation, and forwards the request to



the server. (The behavior of the proxy is similar to Netsolve Agents in this
case.)

{ Executables

Components which actually embeds each remote applications or libraries to

be invoked. They are invoked by the server, and communicate with the client
to perform the actual computations.

{ Data Storage

Temporary storage on the Grid to store intermediate results amongst mul-
tiple servers.

{ Scheduler

The scheduler receives requests from the proxy, and selects an appropriate
server under some scheduling algorithm. The scheduler communicates with
the database server in order to drive the scheduling algorithm.

{ Database Manager

Manages the Information Stored in the Grid resources database. The database

itself utilizes existing distributed resource database for the Internet and/or
the Grid (e.g., LDAP or Globus MDS, which in turn uses LDAP itself); the
resource lookup request from the client is delegated through the manager.
This naturally allows other database infrastructure to be utilized.

{ Network Monitor/Server Monitor

Monitors the status of the network, servers, and other resources. The result
is reported periodically and automatically to the database manager.

{ Fault Manager

Performs recovery action when some fault or error that a�ects the system in
a global way, is detected. For example, if the server is found to be down (using
heartbeat monitoring), the server is deleted from the resource database.

3.3 Client-Server Communication in the Ninf System 2.0

The new Ninf system manages the client-server communication in the following
manner(Figure 3):

The client �rst requests the interface information of the executable to be
invoked to the proxy. It then requests the invocation of the executable. The
client immediately disconnects its connection with the proxy, and enters the
state waiting for a callback from the proxy. The client then can proceed to issue
hundreds of simultaneous requests, as there are no other pending connections.

The proxy in turn inquires the Scheduler for selection of an appropriate serv-
er (or a set of servers) to perform the invocation. The scheduler inquires the
database manager for information on servers and network throughput informa-
tion, as well as other resource information such as location of �les used in the
computation. The scheduling algorithm selects an appropriate server (or set of
servers) and returns the info to the proxy. The algorithm itself is pluggable; one
can employ simple algorithm as is employed with netsolve (sorting by server
load), or more sophisticated algorithm such as those employed by Nimrod.

The proxy forwards the invocation request to the selected server. The server
in turn invokes the executable for performing the actual computation. The exe-



Client Proxy

Server

Executable

Invocation Request

Interface Request

Interface Information

Invocation Request Invoke
Invocation Ack.

Invocation Ack.

Command Req.
Calculation Req.

Parameter Req.

Parameter
Parameter Ack.

Result Send
Result Ack.

Command Req.

Calculation End

Computation

Terminate Req.

Terminated
Terminated

Scheduler DBmanager

Scheduler Request
Query request

Schedule
Query Answer

Fig. 3. Invocation Protocol

cutable then requests to the client the necessary arguments by sending the appro-
priate IDL program for marshalling. When all the arguments have been received,
the executable noti�es the client, disconnects the connection, and proceeds to
compute the request. The client again enters the state to wait for callback from
the executable on completion of the invocation.

When the computation is �nished, the executable reconnects with the client,
and transmits the result, indicating termination of the invocation. The client
acknowledges the receipt with the termination command.

Finally, the executable noti�es the proxy that the invocation has terminated.
The proxy in turn forwards this to the client. The proxy noti�es the Database
Manager of the termination, allowing it to update the resource database.

3.4 Communication Protocol Commands in New Ninf

As an example of communication command protocol, we demonstrate the DTD
of the protocol command for specifying and invoking on a server a remote exe-
cutable, in Figure 4. Based on this DTD, here is sample invocation command in
XML(Figure 5).

One may notice that the invocation command embodies two addresses, client
and observer; here, client is the address used for client callbacks, where as ob-
server is the address used to notify termination of invocation to the proxy.



<!ELEMENT invoke executable

(issuer ,function name, client, observer)>

<!ELEMENT issuer EMPTY>

<!ATTLIST issuer process CDATA #REQUIRED>

<!ATTLIST issuer host CDATA #REQUIRED>

<!ATTLIST issuer port CDATA #REQUIRED>

<!ATTLIST issuer session key CDATA #REQUIRED>

<!ELEMENT function name EMPTY>

<!ATTLIST function name module CDATA #REQUIRED>

<!ATTLIST function name entry CDATA #REQUIRED>

<!ELEMENT client (peer)>

<!ELEMENT observer (peer)>

<!ELEMENT peer EMPTY>

<!ATTLIST peer host CDATA #REQUIRED>

<!ATTLIST peer port CDATA #REQUIRED>

Fig. 4. Remote Executable Command DTD

<invoke executable>

<issuer process="nsserver"

host="hpc.etl.go.jp"

port="30000" session key="12345" />

<function name module="test" entry="mmul" />

<client>

<peer host="hpc.etl.go.jp" port="30000" />

</client>

<observer>

<peer host="hpc.etl.go.jp" port="30001" />

</observer>

</invoke executable>

Fig. 5. Example Invocation Command

3.5 Security Layer in the new Ninf system

Security in a NES system involves Authentication, Authorization, Privacy. Au-
thentication identi�es who is connecting to the server; authorization is what

resources to permit to the user that has been identi�ed; and privacy is to make
communication and computation private to other users connecting to the NES
system.

The new Ninf system has the client connect to the server via a shared proxy;
however, server authentication and authorization must be performed with client
identify, with (rather remote but still existing) possibility that the proxy may be



spoofed. Another situation is when server A acts as a client and delegates part of
its work to server B on another machine. There, not only that server A needs to
be authenticated, but the client identity must be authenticated and authorized
at server B as well. Such \delegation of identity" we deem as essential part of a

NES system

The new Ninf system implements the NAA (NES Authentication Authoriza-
tion) module. NAA employs SSL as the underlying encryption mechanism and
implements delegation of identity and authorization on top of those. Delegation
of identity is done automatically by the NAA, and the client user merely needs to
specify his certi�cate as is done with SSL. NAA itself is relatively self-contained,
and thus could be used by other NES systems such as Netsolve.

Delegation of Identity Identity in SSL consists of a certi�cate certi�ed by a
CA (Certi�cate Authority). CA's can be made hierarchical|it is possible to sign
a certi�cate using another (signed) certi�cate. In NAA, we have implemented
delegation of identity by not merely directly tying in user identity with his
certi�cate, but rather, broadened the `identity' to include all the certi�cates
signed using the user's certi�cate.

SSL employs the public key encryption algorithm, where its certi�cate con-
sists of user's public key being encrypted by CA's private key. We can form a
so-called certi�cate chain by generating another key pair, and encrypting them
with the user's private key. On authentication, CA's public key is used to decrypt
the certi�cate, which reveals the public key of the user. This could be used for
identi�cation (by decrypting data which had been encrypted with the private
key of the user), or for a chain, could in turn be used to obtain the public key
of the next element in the chain. NAA uses such a certi�cate chain for authen-
tication, in that if the user's certi�cate appears somewhere in the chain, it is
regarded as providing the user's indentity. The security layer of Globus employs
a similar strategy[15].

As an example, let us consider when the client calls server A, which in turn
calls server B as a client. When server A receives a connection request from
the client, it generates a new key pair, and sends back its public key to the
client, which is asked to create a session certi�cate embodying its identity. The
client generates a session certi�cate by signing (encrypting) the public key with
its own private key, and sends it back to server A. When server A connects to
server B, server B must 1) authenticate the identity of the client, as well as 2)
identify that the call is being made through server A. This is achieved by server
A connecting with the session certi�cate received from the client along with the
original certi�cate of the client. This is shown in Figure 6.

NAA Policies We have designed NAA policies to be extensible and customiz-
able by the system administrators.

After the client is authenticated, authorization in NAA is performed using a
structure similar to Java 1.2 Policy class. A policy is a set of structures called



Client Server A

User Pub.User Pri.

P1 Pub.P1 Pri.

Client Server A

User Pub.User Pri. User Pub.

P1 Pub. P1 Pri.

Client Server A

User Pub.User Pri. User Pub.

Sign

P1 Pri.

Client Server A

User Pub.User Pri. User Pub.

P1 Pub.

Server B

Server B

Server B

Server B

P1 Pri.

Client Server A

User Pub.User Pri. User Pub.

P1 Pub.

Server B

P2 Pri.

User Pub.

P1 Pub.

P2 Pub.

Key pair 

generation

Certificate 

request

New 

Certificate

Fig. 6. Delegation of Identity

grants, which in turn are sets of permissions to the user. The NAA library man-
ages the policy structures and the identities of current clients of the system. In
addition, NAA namespace is tree-structured according to the X.509 conventions.
Access control is done hierarchically done along this tree using the permissions.

The server program inquires whether the certain permission is applicable to
the client. The library checks the policy if there are grants that contain the
particular permission. Each permission consists of three attributes, class, target,
and action. Class indicates the operation that the permission allows the client to
perform. Target and action designates the subject of the operation, along with
the type of the operation to be performed.

Policies are described using XML in a policy �le. We illustrate the policy �le
DTD and an example of policy description in Figure 7と Figure 8, respectively.

In the example, we have de�ned two grants. The �rst grant indicates that
the user whose identity includes c=jp,o=etl (meaning the Electrotechnical Lab)
can remotely execute test/entry0 and test/entry1. The second grant restricts
test/entry3 to only be remotely executed by userID c=jp,o=etl,CN=nakada.



<!ELEMENT policy (grant)*>

<!ELEMENT grant (permission)*>

<!ATTLIST grant userid CDATA #REQUIRED>

<!ELEMENT permission EMPTY>

<!ATTLIST permission class CDATA #REQUIRED>

<!ATTLIST permission target CDATA #REQUIRED>

<!ATTLIST permission action CDATA #REQUIRED>

Fig. 7. Policy DTD

<policy>

<grant userid="c=jp,o=etl">

<permission class = "stubexec"

target = "test/entry0" action="100 20"/>

<permission class = "stubexec"

target = "test/entry1" action="100 20"/>

</grant>

<grant userid=“ c=jp,o=etl,CN=nakada">

<permission class = "stubexec"

target = "test/entry3" action="100 20"/>

</grant>

</policy>

Fig. 8. Example Policy

Thus, the client c=jp,o=etl,CN=nakada can execute all the remote libraries
(entry0, entry1, and entry3), while the client c=jp,o=etl,CN=sekiguchi

can execute only (entry0 and entry1); furthermore, the client c=jp,o=titech,
CN=matsuoka cannot execute any of the libraries.

We can also grant rights to speci�c calls made by the client through delegation
of identity; for instance, in the delegation of identity scenario described earlier,
we can specify a certain executable to be invoked only if a particular client
was executing a library in server A which in turn had called the executable in
server B. Such a case is conceivable, when a large compute server B is used as a
backend for a server A, which is more subject to public usage; contrastingly, only
a restricted set of jobs could be run on server B, and users are not allowed to
invoke a remote library on server B directly; rather, they must do so via server
A.

In this manner, the hierarchical namespace, along with the policy structure,
gives �ne-grained access control of resources for remote libraries in a NES sys-
tem. Preliminary measurement have shown that such mechanisms do not impose
signi�cant overhead, as long as the calls granularity is large enough such that



the overhead could be amortized (beyond 10s of seconds).

4 Conclusion

We have covered the technical tradeo� points of NES systems, and described
how the new Ninf system v.2.0 had been designed with the tradeo�s in mind,
with descriptions of why a particular choices in the tradeo�s had been made.
We hope that most of the design spaces have been covered, and will serve as a
guide for designing future NES systems.

We are currently in the stage of deploying Ninf v.2.0 alongside v.1.0 to com-
pare and verify the e�ectiveness of the design decisions, along with performance
analysis to assess the their impact as well.

Acknowledgements

Part of this research had been performed under the sponsorship of Information
Promotion Agency of Japan (IPA), under the program \The Development of
Wide-Area, Distributed Computing Applications". We also would like to thank
NTT Software and Computer Institute of Japan who had contributed in the
design, our collaborators and users of the Ninf system, and the rest of the Ninf
project team for their technical discussions and support.

References

1. Ninf: Network Infrastructure for Global Computing. http://ninf.etl.go.jp/.

2. Casanova, H. and Dongarra, J.: NetSolve: A Network Server for Solving Compu-

tational Science Problems, Proceedings of Super Computing '96 (1996).

3. Buyya, R., Abramson, D. and Giddy, J.: Nimrod/G: An Architecture for a Resource

Management and Scheduling System in a Global Computational Grid, Proceedings

of HPC Asia 2000 (2000).

4. Kapadia, N. H., Fortes, J. A. B. and Brodley, C. E.: Predictive Application-

Performance Modeling in a Computational Grid Environment, Proc. of 8th IEEE

International Symposium on High Performance Distributed Computing (HPDC8)

(1999).

5. Ren�e, C. and Priol, T.: MPI Code Encapsulating using Parallel CORBA Objec-

t, Proc. of 8th IEEE International Symposium on High Performance Distributed

Computing (HPDC8), pp. 3{10 (1999).

6. Imai, Y., Saeki, T., Ishizaki, T. and Kishimoto, M.: CrispORB: High performance

CORBA for System Area Network, Proc. of 8th IEEE International Symposium

on High Performance Distributed Computing (HPDC8), pp. 11{18 (1999).

7. Butler, K., Clement, M. and Snell, Q.: A Performance Broker for CORBA, Proc. of

8th IEEE International Symposium on High Performance Distributed Computing

(HPDC8), pp. 19{26 (1999).

8. Foster, I. and Kesselman, C.: Globus: A metacomputing infrastructure toolkit.,

Proc. of Workshop on Environments and Tools, SIAM. (1996).



9. Grimshaw, A., Wulf, W., French, J., Weaver, A. and Jr., P. R.: Legion: The Next

Logincal Step Toward a Natiowide Virtual Computer, CS 94-21, University of

Virginia (1994).

10. Sato, M., Nakada, H., Sekiguchi, S., Matsuoka, S., Nagashima, U. and Takagi, H.:

Ninf: A Network based Information Library for a Global World-Wide Computing

Infrastracture, Proc. of HPCN'97 (LNCS-1225), pp. 491{502 (1997).

11. Nakada, H., Takagi, H., Matsuoka, S., Nagashima, U., Sato, M. and Sekiguchi, S.:

Utilizing the Metaserver Architecture in the Ninf Global Computing System, High-

Performance Computing and Networking '98, LNCS 1401 , pp. 607{616 (1998).

12. Takefusa, A., Matsuoka, S., Ogawa, H., Nakada, H., Takagi, H., Sato, M., Sekiguchi,

S. and Nagashima., U.: Multi-client LAN/WAN Performance Analysis of Ninf: a

High-Performance Global Computing System, Supercomputing '97 (1997).

13. Suzumura, T., Nakagawa, T., Matsuoka, S., Nakada, H. and Sekiguchi, S.: Are

Global Computing Systems Useful? - Comparison of Client-Server Global Com-

puting Systems Ninf, NetSolve versus CORBA, Proc. of International Parallel and

Distributed Processing Symposium (2000).

14. Wolski, R., Spring, N. and Peterson, C.: Implementing a Performance Forecasting

System for Metacomputing: The Network Weather service, Proceedings of the 1997

ACM/IEEE Supercomputing Conference (1997).

15. Foster, I., Kesselman, C., Tsudik, G. and Tuecke, S.: A Security Architecture for

Computational Grids, Proc. 5th ACM Conference on Computer and Communica-

tion Security (1998).


