
Performance Evaluation of a Firewall-compliant Globus-based

Wide-area Cluster System

Yoshio Tanaka�, Mitsuhisa Sato

Real World Computing Partnership

Mitsui bldg. 14F, 1-6-1 Takezono Tsukuba

Ibaraki 305-0032, Japan

fyoshio,msatog@trc.rwcp.or.jp

Motonori Hirano

Software Research Associates, Inc.

1-1-1 Hirakawachou Chiyoda

Tokyo 102-8605, Japan

m-hirano@sra.co.jp

Hidemoto Nakada, Satoshi Sekiguchi

Electrotechnical Laboratory

1-1-4 Umezono Tsukuba

Ibaraki 305-8568, Japan

fnakada,sekiguchig@etl.go.jp

Abstract

In this paper, we present a performance evalua-

tion of a wide-area cluster system based on a �rewall-

enabled Globus metacomputing toolkit. In order to

establish communication links beyond the �rewall, we

have designed and implemented a resource manager

called RMF (Resource Manager beyond the Firewall)

and the Nexus Proxy, which relays TCP communica-

tion links beyond the �rewall. In order to extend the

Globus Metacomputing Toolkit to the �rewall-enabled

toolkit, we have built the Nexus Proxy into the Globus

toolkit. We have built a �rewall-enabled Globus-based

wide-area cluster system in Japan and run some bench-

marks on it. In this paper, we report various perfor-

mance results such as the communication bandwidth

and latencies obtained as well as application perfor-

mance involving a tree search problem. In a wide-area

environment, the communication latency through the

Nexus Proxy is approximately six times larger when

compared to that of direct communications. As mes-

sage size increases however, the communication over-

head caused by the Nexus Proxy can be negligible. We

have developed a tree search problem using MPICH-G.

We used a self-scheduling algorithm, which is consid-

ered to be suitable for a distributed heterogeneous meta-

computing environment since it performs dynamic load

balancing with low overhead. The performance results

indicate that the communication overhead caused by the

�He is working at the Electrotechnical Laboratory since Apr.

2000.

Nexus Proxy is not a severe problem in metacomputing

environments.

1 Introduction

As cluster systems become more widely available, it
becomes feasible to run parallel applications on mul-
tiple clusters at di�erent geographic locations (wide-
area cluster systems) (See Figure 1). The Globus
Metacomputing Toolkit[3] can be one of the best
tools to build such metacomputing environments. The
Globus system provides basic mechanisms such as com-
munication, authentication, network information, and
data access processes for building software infrastruc-
ture for a global computing environment. These mech-
anisms are used to construct various higher-level meta-
computing services, such as parallel programming tools
and schedulers.

Upon utilization of the Globus system at our site
however, we were confronted with a �rewall problem. A
�rewall is one of the most common security systems. A
gateway machine which distinguishes the local site (in-
side) and remote sites (outside, the Internet) is called a
�rewall. The �rewall watches communication packets
between the inside and the outside and it can reject
speci�c communication packets according to the con-
�guration of the �rewall, which is de�ned for a site-
speci�c security policy. The two following con�gura-
tions are possible:

� An allow based configuration

32 nodes Alpha cluster 32 nodes PC cluster

16 nodes SMP cluster
64 nodes PC cluster

Electrotechnical
 Laboratory

Tokyo Institute of
 Technology

Real World Computing
 Partnership

LAN

WAN

Figure 1. Wide-area cluster system.

All communication ports are basically open and
all communication packets are allowed to pass
through the �rewall. In order to intensify the se-
curity, several ports should be con�gured as closed
and communication packets on those ports should
be denied.

� A deny based configuration
All communication ports are basically closed and
all communication packets are denied permission
to pass through the �rewall. In order to make
speci�c ports open, they must be con�gured as
open and communication packets on those ports
must be allowed.

Although there are various con�gurations of �rewall,
we can identify the most typical as follows:

A deny based con�guration is used for incoming
packets.

An allow based con�guration is used for outgoing
packets.

In this paper, we assume that this con�guration is used
for the �rewall.

Communication services within the Globus tookit
are provided by the Nexus communication library[5].
Since the Nexus library in Globus ver. 1.0 allocates
TCP communication ports dynamically and there is
no mechanism in Nexus for specifying the port that the
TCP protocol module listens on, a communication link
cannot be established beyond the deny based �rewall.
Thus, resources inside the �rewall cannot contribute
to wide-area cluster systems. In Globus ver. 1.1, the
Nexus library provides a mechanism to limit the port

range that the TCP protocol module listens on by spec-
ifying the environment variables TCP MAX PORT

and TCP MIN PORT . So, even in the deny based
�rewall, communication links can be established be-
yond the �rewall by con�guring the �rewall to allow
communications on that port range. However, this con-
�guration is basically the same as the allow based �re-
wall and loses the advantages of a deny based �rewall.

In order to spread the global computing environ-
ment over various sites (including universities, labo-
ratories, and companies), global computing systems
should be �rewall-enabled.

In order to make the Globus tookit �rewall-enabled,
we have designed and implemented a resource manage-
ment system called RMF (Resource Manager beyond
the Firewall)[9], which can be used as a Globus Re-
source Allocation Manager (GRAM). RMF manages
multiple computing resources such as cluster systems
and supercomputers. When the RMF type GRAM is
used, computing resources inside the �rewall can be
utilized via a Globus gatekeeper which is running out-
side the �rewall. In order to establish communication
links between job processes beyond the �rewall, we also
designed and implemented the Nexus Proxy which re-
lays TCP communications to provide a communication
mechanism beyond the �rewall. Compared with an ap-
proach of the Globus v1.1 to the �rewall problem, bind-
ing the Nexus Proxy to a privileged port strengthens
the security since binding to privileged ports needs root
authority.

There are several reports concerning the perfor-
mance evaluations of metacomputing environments.
The Globus team has reported its experience con-
structing global computing environments using some
testbeds including I-WAY[2] and GUSTO[3]. G.
Mahinthakumar et.al.'s research[6] is very close to
our research. They reported on the multivariate geo-
graphic clustering in a metacomputing environment us-
ing Globus. However, all testbeds described here have
no �rewall. In order to aggregate sites which are pro-
tected by a �rewall into metacomputing environments,
it is necessary to provide a mechanism for communica-
tions beyond the �rewall and performance analysis for
that mechanism.

Using RMF and the Nexus Proxy, we have built
a �rewall-enabled Globus-based wide-area cluster sys-
tem. In this paper, we present a performance evalu-
ation of that cluster system. In the next section, we
briey describe the RMF. The design and implementa-
tion of the Nexus Proxy is described in section 3. We
measured the performance using a tree search problem
as an example. We take the 0-1 knapsack problem us-
ing the branch-and-bound algorithm as our workload.

We implemented the knapsack problem using MPICH-
G[4]. The experimental results and a discussion are
presented in section 4 and �nally, we summarize our
work in section 5.

2 RMF: Resource Manager beyond the

Firewall

The basic mechanism of RMF is a job queuing sys-
tem and its behavior is similar to LSF, however RMF
can utilize computing resources beyond the �rewall.
The most important design issue of RMF is how to
\provide computing resources such as cluster systems
and supercomputers inside the �rewall to global com-
puting environments". RMF consists of two basic mod-
ules, a Job Queuing System (Q system) and a Re-
source Allocator. The Q system is based on the client-
server model. It provides a remote job execution mech-
anism using job queues. A server of the Q system (Q
server) runs on every computing resource inside the
�rewall. A client of the Q system (Q client) is invoked
by a job manager running outside the �rewall. A re-
source allocator manages computing resources and runs
as a daemon process inside the the �rewall. Figure 2 il-
lustrates the architecture of RMF and the relationships
between the modules.

The following steps show the outline of the execution
ow of a submitted job request.

0. Run a Globus gatekeeper for an RMF type GRAM
outside the �rewall. Run a resource allocator in-
side the �rewall. Run a Q server on every com-
puting resource.

1. A job request is submitted to the RMF gatekeeper.

2. The job manager invoked by the gatekeeper cre-
ates a Q client process.

3. The Q client inquires of a resource allocator which
resources are best to execute a job.

4. A resource allocator selects resources and reports
their names to the Q client.

5. The Q client submits a job request to the Q server
running on the resources reported by the resource
allocator.

6. The Q server receives the job request from the Q
client and creates job processes according to the
job type.

The �rewall must be con�gured to allow commu-
nications between the Q client the resource allocator,

and the Q client and the Q server. The Q system pro-
vides a mechanism to create job processes on di�erent
resources from the one on which the gatekeeper and
the job manager are running. Since the Globus GASS
facility uses �les for input/output, the Q system also
transfers the �les to remote resources.

3 The Nexus Proxy

The Nexus Proxy relays TCP communications to
provide a communication mechanism beyond the �re-
wall. The Nexus Proxy outer server runs outside the
�rewall and the Nexus Proxy inner server runs inside
the �rewall as daemon processes. When a client process
running inside the �rewall tries to connect to remote
hosts or bind a socket to listen on, the client process
sends a relay request (either a connect request or a bind
request) to the Nexus Proxy outer server instead of di-
rectly connecting/binding a port by calling connect()
and bind() functions. Some library functions shown in
Table 1 are provided to utilize the Nexus Proxy.

Figures 3 and 4 illustrate the communication mech-
anism via the Nexus Proxy. In both �gures,

 Remote Site

 PB

Local Site

 PA

Nexus Proxy
Outer Server

Nexus Proxy
Inner Server

 FIREWALL

(1) NXProxyConnect ()

(2) connect ()

(3) accept ()

Figure 3. Communication mechanism via the
Nexus Proxy (active connection)

ProcessA(PA) is running in the local site which has a
�rewall and ProcessB(PB) is running on a remote site
which has no �rewall. The Nexus Proxy inner server
and the outer server bind a port called nxport and
listen on it. Communication packets from the Nexus
Proxy outer server to the Nexus Proxy inner server via
nxport must be allowed. Figure 3 illustrates what hap-
pens when PA intends to connect to PB.

1. PA calls NXProxyConnect() instead of

Job Manager

Q-client

fork/exec

firewall

outside

inside

cluster A cluster B

 super
computer

Job Send
Resource
 Allocator

(2)

(3)

(5)
inquiry

notify

Q-server Q-server Q-server

 gatekeeper

fork/exec

client
(1)

(4)

Figure 2. The architecture of RMF.

Table 1. Nexus Proxy Library Functions
Function Description

NXProxyConnect() Sends a connect request to the Nexus Proxy outer server and returns a �le descriptor
on which the client can communicate with the destination process.

NXProxyBind() Sends a bind request to the Nexus Proxy outer server and returns a �le descriptor
on which the client can listen for requests.

NXProxyAccept() Tries to accept a connection request.

connect(). Then, a connect request is sent
to the Nexus Proxy outer server.

2. When the Nexus Proxy outer server receives a re-
quest from PA, a communication link between PA
and the outer server is established. The outer
server connects to PB via the connect() function.

3. When PB accepts the connect request from the
outer server, a communication link between PA

and PB is established through the outer server.
From that point on, the outer server relays the
communication between PA and PB.

Figure 4 illustrates what happens when PA intends to
bind a port and listen for connect requests, and then
PB tries to connect to PA.

1. PA calls NXProxyBind() instead of bind().
NXProxyBind() returns a port number on which
PA can indirectly accept connection requests from
clients.

2. The outer server binds a port on which the server
listens for connect requests.

3. When PB intends to connect to PA, PB must
connect to the outer server instead of PA.

4. When the outer server accept the connect request
from PB, the outer server connects to the inner
server. Then, the inner server connects to PA.

5. PA calls NXProxyAccept() instead of accept()
to accept a connect request on the port returned
by NXProxyBind(). When PA accepts a con-
nection request from the inner server, the commu-
nication link between PA and PB is established
through the inner server and the outer server.

In the Nexus Proxy system, only the communication
port from the outer server to the inner server must be
opened in advance, i.e. the �rewall must be con�gured
to open the port.

The basic mechanism of the Nexus Proxy is similar
to the SOCKS protocol. Since the SOCKS protocol
does not support the handling of passive open sockets
however, we can not utilize SOCKS as a proxy server
in the Globus system.

We have built the Nexus Proxy system into Globus
system. We modi�ed the source code of Globus
to use NXProxyConnect() and NXProxyBind()
instead of connect() and bind(). Address infor-
mation for the communication startpoint/endpoint
should also be changed to indicate the Nexus

RWCP

COMPaS

 RWCP
 Sun

Nexus Proxy
Inner Server

Nexus Proxy
Outer Server

firewall

ETL

 ETL
 Sun

gateway

 ETL
 O2K

 IM Net
(1.5Mbps)

site nickname system

RWCP RWCP-Sun Sun Enterprise 450 (4CPU)

RWCP COMPaS Pentium Pro SMP cluster (4CPU � 8nodes)

ETL ETL-Sun Sun Enterprise 450 (6CPU)

ETL ETL-O2K SGI Origin 2000 (16CPU)

RWCP Inner Server Sun Ultra Enterprise 450 (2CPU)

RWCP Outer Server Sun Ultra 80 (2CPU)

Figure 5. Experimental Environment

Remote Site

 PB

Local Site

 PA

Nexus Proxy
Outer Server

Nexus Proxy
Inner Server

 FIREWALL

(1) NXProxyBind ()

(2) bind ()

(3) connect ()

(5) NXProxyAccept ()

(4-1) connect ()

(4-2) connect ()

Figure 4. Communication mechanism via the
Nexus Proxy (passive connection)

Proxy server. A communication utilizes the
Nexus Proxy system when environment vari-
ables NEXUS PROXY OUTER SERV ER and
NEXUS PROXY INNER SERV ER are de�ned.
Otherwise, the original communication is done.

4 Results of the Experiment

We ran the 0-1 knapsack problem on our �rewall-
enabled Globus-based wide-area cluster system.

4.1 Experimental Environment

We have installed the Globus system, which is
patched to use the Nexus Proxy if needed, at the
RWCP Tsukuba Research Center and the Electrotech-
nical Laboratory. An experimental environment is
shown in Figure 5. COMPaS[8] consists of eight quad-
processor Pentium Pro (200MHz) SMPs connected by a
100Base-T Ethernet. RWCP has a �rewall and RWCP-
Sun and COMPaS cannot be accessed directly from the
Internet. Although ETL also has a �rewall, ETL-Sun
and ETL-O2K can be accessed directly from RWCP.

4.2 Performance of the Nexus Proxy

In order to evaluate the performance of the Nexus
Proxy, we measured the communication latency and
the bandwidth between 1) RWCP-Sun and COMPaS,
2) RWCP-Sun and ETL-Sun. In both cases, we mea-
sured the latency and the bandwidth for the direct
communications and the indirect (through the Nexus
Proxy) communications1.

� In direct communications between RWCP-Sun
and COMPaS, communication packets pass
through the intranet.

� In indirect communications between RWCP-
Sun and COMPaS, communication packets pass
through the Nexus Proxy outer server and the
Nexus Proxy inner server.

1For the experiments, we have temporarily changed the con-

�guration of the �rewall to enable direct communication between

RWCP-Sun and ETL-Sun.

Table 2. Communication latency and bandwidth
latency bandwidth(4096byte message) bandwidth (1MB message)

RWCP-Sun $ COMPaS (direct) 0.41 msec 3.29 MB/sec 6.32MB/sec
RWCP-Sun $ COMPaS (indirect) 25.0 msec 70.5 KB/sec 538.6 KB/sec
RWCP-Sun $ ETL-Sun (direct) 3.9 msec 112.0 KB/sec 174.4 KB/sec
RWCP-Sun $ ETL-Sun (indirect) 25.1 msec 109.5 KB/sec 176.1 KB/sec

Table 3. Experimental Testbed
Nickname Description

COMPaS 8 processors, 1 processor on each node.
mpich ch p4 device is used.

ETL-O2K 8 processors on ETL-O2K.
vendor provided mpi is used.

Local-area Cluster RWCP-Sun + COMPaS.
total 12 processors, 4 on RWCP-Sun, and 8 on COMPaS.
mpich Globus device which utilize the Nexus Proxy is used.

Wide-area Cluster RWCP-Sun + COMPaS + ETL-O2K.
total 20 processors, 4 on RWCP-Sun, 8 on COMPaS, and 8 on ETL-O2K.
mpich Globus device which utilize the Nexus Proxy is used.

� In communications between RWCP-Sun and ETL-
Sun, communication packets pass through the In-
ternet (1.5Mbps IMNet).

Table 2 shows the results of the experiment.
In indirect communications between RWCP-Sun and
COMPaS, the latency is 60 times larger and a drop
in bandwidth for 4KB and 1MB message is order of
magnitude compared to direct communications. Since
the network between RWCP-Sun and COMPaS uti-
lizes a 100Base-T Ethernet, the overhead of the Nexus
Proxy is clearly revealed. Since both of COMPaS
and RWCP-Sun utilize the Nexus Proxy, bandwidth
for 4KB message is smaller than the bandwidth be-
tween RWCP-Sun and ETL-Sun. For communications
between RWCP-Sun and ETL-Sun, the network la-
tency when utilizing the Nexus Proxy is approximately
six times larger compared to direct communications.
This is caused by the increase in the number of hops
when utilizing the Nexus Proxy. As message size in-
creases however, the bandwidth when utilizing the
Nexus Proxy is close to the bandwidth of the direct
communication. Between RWCP-Sun and ETL-Sun,
the overhead of the Nexus Proxy can be negligible when
the message size is large.

4.3 Implementation of the 0-1 knapsack problem

We have implemented the 0-1 knapsack problem us-
ing MPICH-G. The algorithm is based on the branch-

and-bound algorithm. Each node of a search tree is
represented by a set of index, value, and capacity.
Here, index is the index of the �rst item, which is not
�xed yet, value is the sum of the pro�ts of items which
are already �xed to 1, and capacity is the sum of the
weights. The search tree is represented by a stack onto
which nodes are pushed in a search procedure. For a
parallel implementation of the knapsack problem, we
have given great care to the following issues:

1. The search trees tend to be highly irregular so
that dynamic load balancing among processors is
needed. Furthermore, since the wide-area clus-
ter system is a heterogeneous cluster, the dynamic
load balancing is more important.

2. One goal of our implementation is to make com-
munication overhead caused by procedures for dy-
namic load balancing as small as possible.

We have used the master-slave algorithm. The fol-
lowing gives details of the algorithm:

� A master reads a data �le and pushes a root node
onto the stack.

� The branch operation represents the following
procedures:

1. pop a node from a stack

2. check the node

Table 4. Execution time for the 0-1 knapsack problem
System Num. of processors Execution Time (sec) Speedup

RWCP-Sun 1 26547 1
COMPaS 8 3135 8.47
ETL-O2K 8 6723 3.95

Local-area Cluster 12 2936 9.04
Wide-area Cluster 20 2074 12.80
(use Nexus Proxy)
Wide-area Cluster 20 2003 13.25

(Not use Nexus Proxy)

3. if the node has sub nodes, push them (one or
two sub nodes) onto a stack.

� The master repeats the branch operation interval
times.

� The master sends stealunit nodes on top of its
stack to the slave which has sent a steal request
to the master.

� If a slave has sent back nodes to the master, the
master receives them and pushes them onto the
stack.

� A slave repeats the branch operation until its
stack becomes empty. If the stack is empty, the
slave sends a steal request to the master.

� A slave sends back backunit nodes when the slave
has too many nodes on the stack.

Our algorithm is based on a self-scheduling algorithm.
The algorithm is considered to be suitable for dis-
tributed heterogeneous metacomputing environments
since it performs dynamic load balancing with low over-
head, i.e. a slave tries to steal its master's nodes when
the slave's stack becomes empty. interval is the fre-
quency of the master's check of a slave's steal requests,
and stealunit is the amount of nodes to steal.

4.4 Performance when running the 0-1 Knapsack
Problem

We ran the 0-1 knapsack problem on four
local/wide-area cluster systems shown in Table 3.
When solving the knapsack problem using branch-and-
bound algorithm, the execution time is heavily a�ected
by the characteristics of input data. In order to evalu-
ate the performance characteristics of the cluster sys-
tem clear and normalize the problem, we used such
data as no branches were pruned, meaning entire
search space is traced by processes. The number of

items was 50. We varied a stealunit, interval, and
backunit and took the best combination. In order to
observe the performance of the Nexus Proxy system, we
ran the knapsack problem on Wide-area Cluster under
the following two conditions:

1. Communications between RWCP and ETL utilize
the Nexus Proxy system.

2. Communications between RWCP and ETL did not
utilize the Nexus Proxy system. In order to do
this, we modi�ed the con�guration of the �rewall
temporarily.

Table 4 shows the execution time and the speedup of
the 0-1 knapsack problem on the four clusters. For the
measurement of the speedup, we ran the sequential ver-
sion of the 0-1 knapsack problem on RWCP-Sun, and
its execution time was used to calculate the speedup.
By comparing the execution time on the wide-area clus-
ter system, we can observe that the overhead of the
Nexus Proxy is approximately 3.5% and this can be
negligible under the wide-area network computing en-
vironment. We obtained a reasonable performance
on COMPaS and Local-area Cluster. Table 5 shows the
total number of steal request handled by the master,
and the maximum, minimum, average number of steal
request by the clients on Local/Wide-area Clusters.
The number of steals indicates the grain of stolen jobs.
When the job is coarse grained, the number of steal re-
quests, i.e. the number of communications decreases.
On the other hand, when the job is �ne grained, we
can expect to obtain good load balance. Table 6 shows
the number of nodes which is traversed by the master,
and the maximum, minimum, average number of nodes
traversed by the clients on Local/Wide-area Clusters.
The number of nodes in the table is shown in billions.
We can observe that slaves frequently send a steal re-
quest to the master. As a result, although the com-
munication overhead increased, we obtained good load
balance and reasonable performance even in a Wide-
area Cluster System.

Table 5. Number of steals

System Master RWCP-Sun COMPaS ETL-O2K
Max Min Average Max Min Average Max Min Average

Local-area Cluster 160459 13869 15649 14981 17219 11385 14436
Wide-area Cluster 217330 11603 8394 10563 13289 8007 11465 8508 2105 5693

Table 6. Number of traversed nodes (in billions)

System Master RWCP-Sun COMPaS ETL-O2K
Max Min Average Max Min Average Max Min Average

Local-area Cluster 2.66 4.56 4.44 4.48 4.70 4.34 4.50
Wide-area Cluster 1.47 3.43 3.17 3.27 3.49 3.10 3.25 2.03 1.74 1.85

5 Summary

We have reported the performance of a �rewall-
enabled Globus-based wide-area cluster system. In or-
der to spread the global computing environment over
various sites, a mechanism to handle a �rewall is needed
in the software architecture of the global computing
environment. A proxy mechanism is one solution. Al-
though the communication latency increases by several
times, the overhead of the proxy system can be negligi-
ble for large message sizes in metacomputing environ-
ments.

We used a tree search problem as a benchmark to
measure the performance of the wide-area cluster sys-
tem. Since a parallel tree search problem has a coarse
grained and asynchronous parallelism, it is considered
suitable for metacomputing environments. We imple-
mented the parallel 0-1 knapsack problem, which per-
forms dynamic load balancing with low overhead. As
a result, our experimental results have proved that
metacomputing environments can provide good perfor-
mance for such problems.

References

[1] I. Foster et.al., \The GRID: Blueprint for a
New Computing Infrastructure", Morgan Kauf-
mann Publishers (1998).

[2] I. Foster, et.al., \Software Infrastructure for the I-
WAY high performance distributed computing ex-
periment", Proc. 5th IEEE Symp. on High Perfor-
mance Distributed Computing, pp. 562{572 (1996).

[3] I. Foster et.al., \The Globus Project: A status re-
port", Proc. Heterogeneous Computing Workshop,
pp. 4{18 (1998).

[4] I. Foster et.al., \A Grid-Enabled MPI: Message
Passing in Heterogeneous Distributed Computing
Systems", Proc. Supercomputing (1998).

[5] I. Foster et.al., \The Nexus approach to integrat-
ing multithreading and communication", Journal
of Parallel and Distributed Computing, Vol. 37,
pp. 70{82 (1996).

[6] G. Mahinthakumar et.al., Nicholas T. Karonis,
\Multivariate Geographic Clustering in a Meta-
computing Environment using Globus", Proc. Su-
percomputing (1999).

[7] T. Kielmann et.al., R. A. F. Bhoedjang, \Mag-
PIe: MPI's Collective Communication Operations
for Clustered Wide Area Systems", Proc. Sev-
enth ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pp. 131{140
(1999).

[8] Y. Tanaka et.al., \COMPaS: A Pentium Pro PC-
based SMP Cluster and its Experience", Proc. Int'l
Workshop on PC-NOW'98 (1998) (to appear).

[9] Y. Tanaka et.al., \Resource Manager for Globus-
based Wide-area Cluster Computing", 1st IEEE
International Workshop on Cluster Computing
(IWCC'99), pp. 237{244 (1999).

[10] S. Martello et.al., \KNAPSACK PROBLEMS
{ Algorithms and Computer Implementations",
Wiley-Interscience Series in Discrete Mathematics
and Optimization (1989).

