
Resource Manager for Globus-based Wide-area Cluster Computing

Yoshio Tanaka, Mitsuhisa Sato

Real World Computing Partnership

Mitsui bldg. 14F, 1-6-1 Takezono Tsukuba

Ibaraki 305-0032, Japan

fyoshio,msatog@trc.rwcp.or.jp

Motonori Hirano

Software Research Associates, Inc.

1-1-1 Hirakawachou Chiyoda

Tokyo 102-8605, Japan

m-hirano@sra.co.jp

Hidemoto Nakada, Satoshi Sekiguchi

Electrotechnical Laboratory

1-1-4 Umezono Tsukuba

Ibaraki 305-8568, Japan

fnakada,sekiguchig@etl.go.jp

Abstract

In this paper, we present a new type of Globus re-

source allocation manager (GRAM) called RMF (Re-

source Manager beyond the Firewall) for wide-area

cluster computing. RMFmanages computing resources

such as cluster systems and enables utilization of them

beyond the �rewall in global computing environments.

RMF consists of two basic modules, a remote job queu-

ing system (Q system) and a resource allocator. The Q

system is a remote job queuing system, which schedules

jobs submitted from global computing sites. The re-

source allocator manages resources and allocates them

for requested jobs. For communications beyond the

�rewall between job processes, we designed the Nexus

Proxy, which relays TCP communication links beyond

the �rewall. RMF and the Nexus Proxy provide a

global computing environment in which users can eas-

ily utilize such parallel systems as cluster systems and

supercomputers beyond the �rewall.

1. Introduction

High-speed networks and advances in network

infrastructure make a global computing environ-

ment an attractive platform for high performance

computing[1]. Supercomputers, workstation/PC clus-

ters, and databases, etc. at geographically distributed

sites connected by high-speed networks form a net-

worked virtual computer, or a metacomputer. Global

computing, that is, parallel/distributed processing on

a global computing environment, has great potential

for computationally challenging problems. The Globus

Metacomputing Toolkit[3, 4] provides basic mecha-

nisms for building software infrastructure for a global

computing environment such as communication, au-

thentication, network information, and data access pro-

cesses. These mechanisms are used to construct vari-

ous higher-level metacomputing services, such as par-

allel programming tools and schedulers. The Globus

team has reported its experience constructing global

computing environments using some testbeds includ-

ing I-WAY[2] and GUSTO[3]. The I-WAY network-

ing experiment connects supercomputers and other re-

sources at 17 di�erent sites across North America, and

saw 60 groups develop application in areas as diverse

as large-scale scienti�c simulation, collaborative engi-

neering, and supercomputer-enhanced scienti�c instru-

ments.

As cluster systems become more widely available, it

becomes feasible to run parallel applications on mul-

tiple clusters at di�erent geographic locations (wide-

area cluster systems[7, 8]) (See Figure 1). To en-

able wide-area cluster computing, however, many prob-

lems have to be solved. For example, a suitable soft-

ware infrastructure will be expected, which deals with

issues like security, heterogeneity, job scheduling, re-

source management, and accounting. Globus can be

one of the best tools to build such infrastructures. We

have built a global computing testbed in Japan using

Globus toolkit to examine its mechanisms, behavior,

and performance. From our experience, we identi�ed

the following two issues:

32 nodes Alpha cluster 32 nodes PC cluster

16 nodes SMP cluster
64 nodes PC cluster

Electrotechnical
 Laboratory

Tokyo Institute of
 Technology

Real World Computing
 Partnership

LAN

WAN

Figure 1. Wide-area cluster system.

1. Resource managers for cluster systems

Under the Globus-based metacomputing systems,

Globus Resource Allocation Manager (GRAM) is

used for resource management such as process cre-

ation on remote resources. According to the site-

speci�c scheduling policy, several types of GRAMs

are exist such as fork type GRAM and LSF type

GRAM1. However, there is no suitable resource

managers for resource management of cluster sys-

tems. In order to utilize cluster systems as com-

puting servers under Globus-based wide-area clus-

ter systems, several resource managers can be used

such as fork type GRAM and LSF type GRAM.

If we utilize fork type GRAM, we have to in-

stall the Globus system and fork type GRAM on

every workstation/PC which composes the clus-

ter system. If the cluster system consists of tens

to hundreds of workstations/PCs, installation of

the Globus system for all computers would be a

burden to administrators of the global comput-

ing system. LSF type GRAM is implemented by

Load Sharing Facility(LSF), which is a commer-

cial resource management system. LSF provides

the facility of application resource management by

scheduling, analyzing, and monitoring the process-

ing or distributed application workloads. In LSF,

workload scheduling involves taking user jobs and

dynamically executing them on the appropriate re-

source according to policies that cover resource

availability, time of job execution, and external

events. Since LSF treats a cluster system not

a virtual parallel computer but many individual

workstations/PCs, LSF is not suitable to manage

1
Details are described in the next section.

multiple cluster systems in the LAN environment.

The most commercial resource management sys-

tems are still expensive and have little exibility as

resource managers on global computing systems.

2. The �rewall problem

A �rewall is one of the most typical security sys-

tems. The typical �rewall is a deny-based �rewall,

which basically denies all TCP/UDP communica-

tion links. In order to establish communication

links beyond the deny-based �rewall, the �rewall

must be con�gured to allow the communication

link. In this paper, we assume a deny-based �re-

wall. Communication services within the Globus

toolkit are provided by the Nexus communication

library[6]. Since the Nexus library allocates TCP

communication ports dynamically and there is no

mechanism in Nexus for specifying the port that

the TCP protocol module listens on, the commu-

nication link can not be established beyond the

�rewall. Thus, resources inside the �rewall cannot

contribute to wide-area cluster systems. In the I-

WAY and GUSTO testbeds, supercomputers and

workstations have no �rewall. In order to spread

the global computing environment over the vari-

ous sites (including universities, laboratories, and

companies), the global computing systems should

be responsible for �rewalls.

In this paper, we present the design and implemen-

tation of a new type of Globus Resource Allocation

Manager (GRAM) called RMF (Resource Manager be-

yond the Firewall). RMF is designed to solve the two

problems mentioned above, and has the following two

features:

1. RMF manages multiple computing resources such

as cluster systems, supercomputers, and worksta-

tions and provides them for global computing en-

vironments.

2. RMF provides a mechanism to deploy the Globus

gatekeeper and the resource manager on individual

systems. By deploying the Globus gatekeeper out-

side the �rewall and the resource manager inside

the �rewall, RMF enables computing resources of

clusters inside the �rewall to be used for global

computing.

We also report the Nexus Proxy, which relays TCP

communication link and enables communications be-

yond the �rewall. In the next section, we introduce

the basic architecture of the Globus system as back-

ground. In section 3, we present the design and imple-

mentation of RMF and the Nexus Proxy. We discuss an

outline of future directions for global computing envi-

ronments and also for our research in section 4. Finally,

we present our concluding remarks.

2. The Globus Metacomputing Toolkit

Globus is a large U.S. based project which is de-

veloping the fundamental technology that is needed

to build computational grids { execution environments

that enable an application to integrate geographically

distributed instruments, displays, and computational

and information resources. The Globus metacomput-

ing toolkit is a central element of the Globus system.

The toolkit de�nes the basic services and capabilities

required to construct a computational grid. It com-

prises a set of components that implement basic ser-

vices for security, resource location, resource manage-

ment, communication, etc.. Table 1 lists the services

currently de�ned by Globus.

These services are distinct and have well-de�ned in-

terfaces, they can be incorporated into applications

or tools in an incremental fashion. Each module de-

�nes an interface, which higher-level services use to in-

voke that module's mechanisms, and provides an im-

plementation, which uses appropriate low-level opera-

tions to implement these mechanisms in di�erent en-

vironments. Here, we focus the resource management

system and proceed to provide a more detailed descrip-

tion of GRAM.

As described before, Globus is a layered architecture

in which high-level Globus services are built on top of

an essential set of core local services. At the bottom

of this layered architecture, GRAM provides the local

component for resource management. Each GRAM is

responsible for a set of resources operating under a site-

speci�c allocation policy, often implemented by a local

resource management system, such as LSF or Condor.

Each computing server provides one or more GRAMs,

each responsible for a particular local set of resources.

For each GRAM, a GRAM gatekeeper (server) must be

running and listening at a port on a computing server.

For instance, if a server provides two types of GRAMs,

LSF and fork, an LSF gatekeeper and a fork gatekeeper

must exist on the server before any request is submit-

ted. If the fork gatekeeper receives the request, job

processes are created using the fork system call func-

tion. If the LSF gatekeeper receives the request, job

processes are enqueued via the bsub command which is

provided by LSF.

The Globus toolkit provides APIs and user com-

mands to utilize the modules listed in Table 1. For

example, the globusrun command is provided to submit

a job request to a Globus resource. Figure 2 illustrates

the resource management architecture and shows how

a job request submitted via the globusrun command is

dispatched on a remote resource. In the �gure, a job

request is submitted from a local client to a remote

server (gcitest.etl.go.jp).

1. In order to send a job request to the gatekeeper,

run the globusrun command on a client. A job

request is a request to the gatekeeper to create

one or more job processes, expressed in the sup-

plied Resource Speci�cation Language (RSL). In

the �gure, a job request is sent to the fork gate-

keeper. gcitest:etl:go:jp-fork is the name of the

gatekeeper. The job request is speci�ed by the last

argument of the globusrun command.

2. When the globusrun command is invoked, gate-

keeper's Distinguished Name (DN) is retrieved

from the gatekeeper's name via MDS facilities. As

shown in the �gure, the gatekeeper's DN contains

a hostname, a port number, and a gatekeeper cer-

ti�cate subject.

3. According to the gatekeeper's DN, a job request

is submitted to the Globus gatekeeper. The gate-

keeper prompts the user to enter his pass phrase

and checks user authentication.

4. The gatekeeper creates a job manager which starts

the job on the local system, and handles all further

communication with the client.

5. According to the job manager type, the job man-

ager creates job processes in its own manner. For

example, a fork job manager creates job processes

using the fork system call function.

Table 1. Globus Service

Service Name Description

Resource Management GRAM Resource allocation and process management

Communication Nexus Unicast and multicast communication services

Information MDS Distributed access to structure and status information

Security GSI Authentication and related security services

Health and status HBM Monitoring of health and status of system components

Remote data access GASS Remote access to data via sequential and parallel interfaces

Executable management GEM Construction, caching, and location of executables

Local Site

Remote Site

CLIENT:
% globusrun -s -r gcitest.etl.go.jp-fork \
 ’&(executable=/bin/ls)(arguments=-al /usr)’

 Gatekeeper
(gcitest.etl.go.jp-fork)

Job Request

Job Manager

Scheduler Specific
 Plugin

fork/exec

Job Process

fork

 Job
request reply

Job
cancel request

(1)

(3)

(4)

(5)

(6)

gatekeeper’s DN:
gcitest.etl.go.jp:754:/C=US/O=Globus/
O=Electrotechnical Laboratory/
CN=gcitest.etl.go.jp-fork

(2)

Figure 2. The architecture of GRAM and the ow of a job request.

6. A job manager translates messages received from

the gatekeeper and client into an internal API that

is implemented by the machine speci�c compo-

nent. It also translates callback requests from the

machine speci�c components through the internal

API into messages to the application manager.

Since a gatekeeper invokes a job manager via the

execv system call and a fork job manager creates job

processes using the fork system call, the gatekeeper,

the job manager, and the job processes are all running

on the same resources. In order to utilize di�erent re-

sources from the one on which the gatekeeper is run-

ning, other types of GRAMs are necessary such as LSF

and Condor.

While Globus services can be used directly by ap-

plication programmers, they are more commonly ac-

cessed via higher-level tools developed by tool develop-

ers. One of the tools is MPICH-G[5], a grid-enabled

MPI based on the MPICH library, with Nexus used

for communication, GRAM services for resource allo-

cation, and GSI services for authentication. MPICH-G

is a complete implementation of the MPI-1 standard.

The only change to the MPICH startup model is that

the contents of the machines �le include resource man-

ager (GRAM) names. Once the machines �le has been

read and resource manager contacts determined, the

MPICH-G mpirun implementation calls globusrun to

manage the task of job submission and execution.

3. Design and Implementation of RMF

3.1. Resource Management

As described above, we found two problems for

building a Globus-based wide-area cluster system.

Those are no resource managers suitable for wide-area

cluster systems and the �rewall problem. Since in-

stallation of the Globus system for all computers is

a painful work, fork type GRAM can not be used for

wide-area cluster systems. On the other hand, LSF

type GRAM is also not suitable for building wide-area

cluster systems because LSF cannot treats a cluster

system as a virtual parallel computers and has little

exibility for changing scheduling policies. Further-

more, since LSF dynamically allocates TCP ports for

job submission, LSF type GRAM cannot be used for

sites which use the �rewall.

Aiming to solve the two problems described above

(resource management for cluster systems and the �re-

wall problem), we designed and implemented a new

experimental type of GRAM called RMF which man-

ages cluster systems and parallel systems inside the

�rewall and provides them to global computing envi-

ronments. The most important design issue of RMF

is how to \provide computing resources such as clus-

ter systems and supercomputers inside the �rewall to

global computing environments". RMF consists of two

basic modules, a Job Queuing System (Q sys-

tem) and a Resource Allocator.

� Q system

The Q system is based on the client-server model.

It provides a remote job execution mechanism us-

ing job queues. A server of the Q system (Q server)

runs on every computing resource inside the �re-

wall. A client of the Q system (Q client) is invoked

by a job manager running outside the �rewall. A

Q client inquires of a resource allocator the best

resources on which job processes will run, and it

submits job requests to Q servers on the resources

speci�ed by the resource allocator. A Q server

creates job processes to process jobs received and

queues them for later inquiries about job status

and cancellation of the jobs. Only a TCP com-

munication port on which Q clients and Q servers

communicate must be opened beyond the �rewall.

� Resource Allocator

A resource allocator runs as a daemon process on

a workstation inside the �rewall. It manages re-

sources and waits inquiries from Q clients. When

the resource allocator receives an inquiry from a

Q client, it selects the most suitable resource on

which job processes will run and reports the Q

client of the name of the resources.

Figure 3 illustrates the architecture of RMF and the

relationships between the modules.

The following steps show the outline of the execution

ow of a submitted job request.

0. Run a Globus gatekeeper for an RMF type GRAM

outside the �rewall. Run a resource allocator in-

side the �rewall. Run a Q server on every com-

puting resource.

1. A job request is submitted to the RMF gatekeeper.

2. The job manager invoked by the gatekeeper cre-

ates a Q client process.

3. The Q client inquires of a resource allocator which

resources are the best to execute a job. Currently,

the Q client sends only the requested number of

nodes to the resource allocator as a hint on re-

source selection.

4. A resource allocator selects resources and reports

their names to the Q client.

5. The Q client submits a job request to the Q server

running on the resources reported by the resource

allocator. The job request includes information

necessary for job process creation, such as user

information, job type (the same as the job type

used in Globus toolkit), the number of nodes, the

executable �le name and its arguments, and shell

environment variables.

6. The Q server receives the job request from the Q

client and creates job processes according to the

job type. The MPI job type shows that the job

is requested by the MPICH-G mpirun command.

The MPI job type implies that the executable is

written using MPICH-G and the MPI processes

will be running over the wide-area cluster system.

If the job type is MPI, the Q server creates a job

process to execute the job directly, meaning that

the Q server creates the process via an execv sys-

tem call. Other job types indicate that the job

is directly requested via the globusrun command.

The other job types indicate that the MPI pro-

cesses will be running on resources in one site.

If the job type is not MPI, the Q server creates

a machines �le which includes the names of ma-

chines reported by the resource allocator and runs

an mpirun command with the machines �le as a -

machine�le argument. Here, the mpirun command

is not MPICH-G based but cluster speci�c MPICH

based such as MPICH on ch p4 device and MPICH

on ch shmem device.

The Q system provides a mechanism to create job

processes on di�erent resources from the one on which

the gatekeeper and the job manager are running. Since

the Globus GASS facility uses �les for input/output,

the Q system also transfers the �les to remote re-

sources.

The resource allocator reads a con�guration �le of

the resources. Figure 4 shows a sample con�guration

�le.

`#'indicates a comment line. Name is the name of

the resource, type is either `c' or `p'. `c' means that

the resource is a cluster system, and `p' means that

the resource is a supercomputer. procs is the num-

ber of processors in a node, and nnodes is the num-

Job Manager

Q-client

fork/exec

firewall

outside

inside

cluster A cluster B

 super
computer

Job Send
Resource
 Allocator

(2)

(3)

(5)
inquiry

notify

Q-server Q-server Q-server

 gatekeeper

fork/exec

client
(1)

(4)

Figure 3. The architecture of RMF.

Name type procs nnodes clock pre�x

COMPaS c 4 8 200 pdpsmp

COMPaS II c 4 4 450 pdsmpc

SR2201 p 1 256 150

Figure 4. A Sample Con�guration File.

ber of nodes in the resource. clock is the CPU clock

in MHz, and prefix is a hint for the name of the

workstations/PCs in the cluster system. In Figure 4,

for instance, the names of the nodes of COMPaS are

pdpsmp0, pdpsmp1, ..., pdpsmp7. The resource allo-

cator selects resources using several hints such as the

number of running jobs, available nodes, and the CPU

clock.

3.2. The Nexus Proxy

By submitting jobs to the RMF gatekeeper, users

can execute jobs on remote resources protected by the

�rewall. However, there is still a restriction. Jobs run-

ning inside the �rewall cannot communicate with pro-

cesses which are running outside the �rewall. For ex-

ample, let us consider the case where we try to run two

MPICH-G processes on two sites, each process running

on an individual site. These processes use the Nexus

communication library and the Nexus tries to establish

TCP communication links on a standard WAN envi-

ronment. Since the Nexus library allocates TCP com-

munication ports dynamically and there is no mech-

anism in Nexus for specifying the port that the TCP

protocol module listens on, the communication link be-

tween the processes cannot be established beyond the

�rewall so that the processes can not communicate with

each other.

To overcome this restriction, we designed the Nexus

Proxy which relays TCP communications to provide a

communication mechanism beyond the �rewall. The

Nexus Proxy server runs outside the �rewall and it re-

ceives relay requests from clients. When a client tries

to connect to remote hosts or bind a socket to listen

for requests, the client sends a relay request (either a

connect request or a bind request) to the Nexus Proxy

server instead of call connect() and bind() functions. A

connect request includes the destination address and

the port number to which the client intends to con-

nect. A bind request includes the address and the

port number on which the client listens for the request.

Some library functions are provided to utilize the

Nexus Proxy mechanism. The most important func-

tions are NXProxyConnect() and NXProxyBind().

NXProxyConnect() sends a connect request to the

Nexus Proxy server and returns a �le descriptor on

which the client can communicate with the remote re-

sources. A bind request is sent to the Nexus Proxy

server via NXProxyBind(). Figure 5 illustrates the

communication mechanism via the Nexus Proxy when

a process running inside the �rewall intends to connect

to a process running outside the �rewall.

0. The Nexus Proxy server is running outside the �re-

wall and listens requests from clients. process A

process A

Nexus
 Proxy

Firewall

outside inside

process B

port for listen
port for connect

(1)

process A

Nexus
 Proxy

Firewall

outside inside

process B

port for listen
port for connect

(2)

NXProxyConnect()

connect()

Figure 5. The communication mechanism via the Nexus Proxy.

is running outside the �rewall and waits commu-

nication requests from other processes.

1. When process B intends to connect to process A,

it calls NXProxyConnect() instead of connect().

Then, a connect request is sent to the Nexus Proxy

server.

2. When the Nexus Proxy server accepts the request,

a communication link between the process B and

the Nexus Porxy is established. Then, the Nexus

Proxy server calls the connect() function and sends

a connect request to the process A, which is spec-

i�ed in the connect request from process B.

3. When the process A accepts the connect request

from the Nexus Proxy server, the communication

link between the Nexus Proxy and the process A

is established. The Nexus Proxy server relays the

communication between the client and the desti-

nation.

If the Nexus Proxy server receives a bind request,

it creates a new socket and listens for connect re-

quests on it. When the server accepts connect requests

from remote resources, it connects to the client and

establishes the communication link between the client

and the remote resources. The �rewall must be con-

�gured to allow a communication link to the Nexus

Proxy. The architecture of the Nexus Proxy is sim-

ilar to other Proxy servers such as SOCKS. However,

since SOCKS can not be utilized for initial passive open

socket, it can not incorporated into the Nexus commu-

nication library. We modi�ed the source code of Globus

to use NXProxyConnect() and NXProxyBind() in-

stead of connect() and bind(). Address information for

the communication startpoint/endpoint should also be

changed to indicate the Nexus Proxy server. As a re-

sult, MPICH-G processes are able to communicate with

each other beyond the �rewall.

4. Other Issues for Wide-area Cluster Comput-

ing

In the Globus-based wide-area cluster computing

environment, RMF and the Nexus Proxy provide a

mechanism to utilize parallel systems such as worksta-

tion/PC clusters and supercomputers beyond the �re-

wall. Although RMF is a suitable GRAM for wide-area

cluster systems based on the Globus toolkit, there are

still several issues for wide-area cluster computing:

� Optimization of a resource allocation al-

gorithm

The current implementation of the resource allo-

cator uses only static information including the

resource con�guration listed in Figure 4, the num-

ber of requested nodes, and the number of running

jobs on each resource as hints for resource alloca-

tion scheduling. Dynamic information such as the

processor's load can be introduced to the alloca-

tion scheduling.

On the other hand, it will be convenient to provide

methods to specify resource requirements for users

(currently, only the number of required nodes can

be speci�ed). For example, a user may specify the

computational requirements in terms of oating

point performance (MFLOPs) or network band-

width. As used in the Globus system, Resource

Speci�cation Language (RSL) can be used to de-

scribe these resource requirements.

� Executable management on remote re-

sources

When users submit jobs to remote resources, the

corresponding executable must be on each remote

resource in advance. Manual staging of executa-

bles is a painful activity. Globus Executable Man-

agement (GEM) service is intended to support the

identi�cation, location, and creation of executa-

bles in heterogeneous environments. GEM can

be used in conjunction with other Globus services

to implement a variety of distributed code man-

agement strategies, based on online executable

archives and compile servers. We are designing

automated mechanism for identifying and gener-

ating appropriate executables.

� Programming environments

MPICH-G enables us to run any arbitrary MPI ap-

plication on global computing environments sim-

ply by running the mpirun command. As de-

scribed in [9], however there are several perfor-

mance problems such as collective communication

performance on wide-area cluster systems. Fur-

ther research is necessary, for example, research re-

lated to collective operation performance and net-

work topology information.

5. Concluding Remarks

We have presented a new type of Globus resource al-

location manager, RMF, which intends to utilize clus-

ter systems and supercomputers beyond the �rewall.

The Nexus Proxy relays TCP communications beyond

the �rewall and can be used from the Nexus commu-

nication library. RMF and the Nexus Proxy enable us

to construct a wide-area cluster system based on the

Globus system in which users can utilize computing

resources such as cluster systems beyond the �rewall

easily. Since the �rewall is a severe obstacle to con-

structing global computing environments, RMF type

GRAM is suitable for building Globus-based wide-area

cluster system.

References

[1] I. Foster and Carl Kesselman, \The GRID:

Blueprint for a New Computing Infrastructure",

Morgan Kaufmann Publishers (1998).

[2] I. Foster, Jonathan Geisler, Bill Nickless, Warren

Smith, and Steven Tuecke, \Software Infrastructure

for the I-WAY high performance distributed com-

puting experiment", Proc. 5th IEEE Symp. on High

Performance Distributed Computing, pp. 562{572

(1996).

[3] I. Foster and Carl Kesselman, \The Globus Project:

A status report", Proc. Heterogeneous Computing

Workshop, pp. 4{18 (1998).

[4] http://www.globus.org/

[5] I. Foster and Nicholas T. Karonis, \A Grid-

Enabled MPI: Message Passing in Heterogeneous

Distributed Computing Systems", Proc. Supercom-

puting (1998).

[6] I. Foster, Carl Kesselman, and Steven Tuecke,

\The Nexus approach to integrating multithread-

ing and communication", Journal of Parallel and

Distributed Computing, Vol. 37, pp. 70{82 (1996).

[7] http://www.cs.vu.nl/albatross/.

[8] H. E. Bal, Aske Plaat, Thilo Kielmann, Ja-

son Maassen, Rob van Nieuwpoort, and Ronald

Veldema, \Parallel Computing on Wide-Area Clus-

ters: the Albatross Project", Proc. Extreme Linux

Workshop, pp. 20{24 (1999).

[9] T. Kielmann, R. F. H. Hofman, H. E. Bal, A. Plaat,

and R. A. F. Bhoedjang, \MagPIe: MPI's Col-

lective Communication Operations for Clustered

Wide Area Systems", Proc. Seventh ACM SIG-

PLAN Symposium on Principles and Practice of

Parallel Programming, pp. 131{140 (1999).

