
OmniRPC: A Grid RPC Facility for Cluster and
Global Computing in OpenMP

(Extended Abstract)

Mitsuhisa Sato1, Motonari Hirano2, Yoshio Tanaka2, and Satoshi Sekiguchi2

1 Real World Computing Partnership, Tsukuba, Japan
2 Software Research Associates, Inc

3 Electrotechnical Laboratory

Abstract. Omni remote procedure call facility, OmniRPC, is a thread-
safe grid RPC facility for cluster and global computing environments.
The remote libraries are implemented as executable programs in each
remote computer, and OmniRPC automatically allocates remote library
calls dynamically on appropriate remote computers to facilitate location
transparency. We propose to use OpenMP as an easy-to-use and simple
programming environment for the multi-threaded client of OmniRPC.
We use the POSIX thread implementation of the Omni OpenMP com-
piler which allows multi-threaded execution of OpenMP programs by
POSIX threads even in a single processor. Multiple outstanding requests
of OmniRPC calls in OpenMP work-sharing construct are dispatched to
different remote computers to exploit network-wide parallelism.

1 Introduction

In this paper, we propose a parallel programming model for cluster and global
computing using OpenMP and a thread-safe remote procedure call facility, Om-
niRPC.

In recent years, two important computing platforms, a cluster of worksta-
tion/PC and a computational grid, have been gathering many interests in high
performance network computing. Recent progress in microprocessors and inter-
connection networks motivates high performance computing using clusters out of
commodity hardware. Advances in wide-area networking technology and infras-
tructure make it possible to construct large scale high-performance distributed
computing environments, or computational grids that provide dependable, con-
sistent and pervasive access to enormous computational resources.

Omni remote procedure call facility, OmniRPC, is a thread-safe implemen-
tation of Ninf RPC which is a grid RPC facility in a wide-area network. The
remote libraries for OmniRPC are implemented as executable programs, and
are registered in each remote computer. The OmniRPC programming interface
is designed to be easy-to-use and familiar-looking for programmers of existing
languages such as FORTRAN, C and C++, and is tailored for scientific com-
putation. The user can call the remote libraries without any knowledge of the

R. Eigenmann and M.J. Voss (Eds.): WOMPAT 2001, LNCS 2104, pp. 130–136, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

OmniRPC: A Grid RPC Facility for Cluster and Global Computing 131

Multi-threaded client
in OpenMP remote nodes

 in a cluster

remote nodes
in a grid environment

node

node

node

node

node

node node

OmniRPC

Globus toolkit

wide-area
network

Local-area
network

rsh&
TCP/IP

Fig. 1. OpenMP multi-threaded client and OmniRPCs

network programming, and easily convert his existing applications that already
use popular numerical libraries such as LAPACK. A client can execute the time-
consuming part of his program in multiple and heterogeneous remote computers,
such as clusters and supercomputers, without any requirement for special hard-
ware or operating systems. OmniRPC provides uniform access to a variety of
remote computing resources.

At the beginning of execution, the initialization of OmniRPC collects the in-
formation about remote libraries registered in available remote computers. Om-
niRPC automatically allocates remote library calls dynamically on appropriate
remote computers to facilitate location transparency. In order to support paral-
lel programming, the multi-threaded client can issue multiple requests by Om-
niRPC simultaneously. Each outstanding request is dispatched to a different re-
mote computer to exploit network-wide parallelism. Although the POSIX thread
library can be used for programming multi-threaded clients, multi-threaded pro-
gramming using thread library directly makes the client program complicated.

While the OpenMP Application Programming Interface (API) is proposed
for parallel programming on shared-memory multiprocessors, OpenMP provides
a multi-threaded programming model without the complexity of multi-threaded
programming. We have developed Omni OpenMP compiler[4], which is a free
and open-source, portable implementation of OpenMP. In a shared memory
multiprocessor, threads in OpenMP are eventually bound to physical processors
for efficient parallel execution. The POSIX thread implementation of the Omni
OpenMP compiler allows multi-threaded execution of OpenMP programs by
POSIX threads even in a single processor.

132 M. Sato et al.

OpenMP provides an easy-to-use and simple programming environment for
the multi-threaded client of OmniRPC. Figure 1 illustrates the OpenMP multi-
threaded client and OmniRPCs. A typical application in cluster and grid envi-
ronments is parametric execution which executes the same code with different
input parameters. For this type of applications, we can use OpenMP parallel loop
directives to execute OmniRPC calls in parallel for different remote computers.

For a computational grid environment, OmniRPC uses Globus toolkit[1] as
a grid software infrastructure. Although a Globus implementation of MPICH,
MPICH-G, can be used for parallel programming in Globus, message passing
programming requires programmers to explicitly code the communication and
makes writing parallel programs cumbersome. While our proposed model is lim-
ited to a master-slave model, it provides very simple parallel programming en-
vironment for a computational grid.

The parallel programming model with the OpenMP client of OmniRPC can
be applied to other RPC facilities such as CORBA if these APIs are thread-safe.
NetSolve[3] is a similar RPC facility to our OmniRPC and Ninf. It also provides a
programming interface similar to ours and automatic load balancing mechanism
by a agent. To our best knowledge, no experience of parallel programming with
OpenMP is reported.

2 OmniRPC: A Thread-Safe Remote Procedure Call
Facility

A client and the remote computational nodes which execute remote procedures
may be connected via a local area network or over a wide-area network. A client
and nodes may be heterogeneous: data in communication is translated into the
common network data format.

The remote libraries are implemented as executable programs which contain
network stub routine as its main routine, and registered in the registry file in
each remote nodes. We call such executable programs Ninf executables (pro-
grams). These stubs are generated from the interface descriptions by the Ninf
IDL compiler.

In a client node, a user prepares his own machine file which contains the host
names of available computation nodes. The OmniRPC initialization function,
OmniRPC_init, reads registry files in the remote nodes to make the database
which associates the entry names of remote functions with Ninf executables.

OmniRPC inherits its API and basic architecture from Ninf.
OmniRPC_Call() is the sole client interface to call the remote library. In
order to illustrate the programming interface with an example, let us consider
a simple matrix multiply routine in C programs with the following interface:

double A[N][N],B[N][N],C[N][N]; /* declaration */
....
dmmul(A,B,C,N); /* calls matrix multiply, C = A * B */

When the dmmul routine is available in a remote node, the client program can
call the remote library using OmniRPC_Call, in the following manner:

OmniRPC: A Grid RPC Facility for Cluster and Global Computing 133

OmniRPC_Call("dmmul",A,B,C,N); /* call remote library */

Here, dmmul is the entry name of library registered as a Ninf executable on a
remote node, and A,B,C,N are the same arguments. As we see here, the client
user only needs to specify the name of the function as if he were making a local
function call; OmniRPC_Call() automatically determines the function arity and
the type of each argument, appropriately marshals the arguments, makes the
remote call to the remote node, obtains the results, places the results in the
appropriate argument, and returns to the client. In this way, the OmniRPC is
designed to give the users an illusion that arguments are shared between the
client and the remote nodes.

To realize such simplicity in the client programming interface, a client re-
mote function call obtains all the interface information regarding the called li-
brary function at runtime from the server. The interface information includes
the number of parameters, these types and sizes and access mode of arguments
(read/write). Using these informations, the RPC automatically performs ar-
gument marshaling, and generates the sequence of sending and receiving data
from/to the nodes. This design is in contrast to traditional RPCs, where stub
generation is done on the client side at compile time.

The interface to a remote function is described in Ninf IDL. For example,
the interface description for the matrix multiply given above is:

Define dmmul(long mode_in int n, mode_in double A[n][n],
mode_in double B[n][n], mode_out double C[n][n])

"... description ..."
Required "libxxx.o" /* specify library including this

routine. */
Calls "C" dmmul(n,A,B,C); /* Use C calling convention. */

where the access specifiers , mode_in and mode_out, specify whether the argu-
ment is read or written. To specify the size of each argument, the other in_mode
arguments can be used to form a size expression. In this example, the value
of n is referenced to calculate the size of the array arguments A, B, C. Since it
is designed for numerical applications, the supported data type in Ninf IDL is
tailored for such a purpose; for example, the data types are limited to scalars
and their multi-dimensional arrays. The interface description is compiled by the
Ninf interface generator to generate a stub program for each library function.
The interface generator also automatically outputs a makefile with which the
Ninf executables can be created by linking the stub programs and library func-
tions.

To invoke a Ninf executable in a remote node, OmniRPC use the remote shell
command “rsh” in a local area network and GRAM(Globus Resource Allocation
Manager) API of Globus toolkit in a grid environment. The Ninf executable
is invoked with the arguments of the client host name and port number for
waiting the connection. For a grid environment, we designed OmniRPC on top
of the Globus toolkit. The Globus I/O module is used in a grid environment

134 M. Sato et al.

instead of TCP/IP in local area network. The Globus also provides security and
authentication by GSI (Globus Security Infrastructure).

To handle multiple outstanding RPC requests from a multi-threaded client,
OmniRPC maintains the queue for outstanding remote procedure calls.
OmniRPC_Call() enqueues the request for the remote call, and blocked for wait-
ing the return from the remote call. The scheduler thread is created to manage
the queue. For the requested call in the queue, it searches the database of the
remote function entries to schedule the requests to the remote nodes. When
the results are sent back, the scheduler thread receives the results and stores it
into the output argument of the call. Then, it resumes the waiting thread. The
current implementation uses a simple round-robin scheduling. The machine file
contains the maximum number of jobs as well as the list of host names. When all
remote nodes are busy and the number of jobs reaches to the limit, the thread
executing OmniRPC_Call() is blocked. As soon as the jobs for requested remote
call is over, the next request is scheduled if any waiting requests exist in the
queue.

3 OpenMP Client Using OmniRPC

Since OmniRPC is thread-safe, multiple remote procedure calls can be out-
standing simultaneously from multi-threaded programs written in OpenMP.

A typical application of OmniRPC in OpenMP is to execute the same pro-
cedure over different input arguments as follows:

OmniRPC_init(); /* initialize RPC */
....
#pragma omp parallel for
for(i = 0; i < N; i++)
OmniRPC_Call("work",i,...);

In this loop, the remote function work are executed in parallel with different
arguments i in the remote nodes.

The procedure-level task-parallelism is also described as in the following code:

#pragma omp parallel sections
{
#pragma omp section

OmniRPC_Call("subA");
#pragma omp section

OmniRPC_Call("subB");
#pragma omp section

OmniRPC_Call("subC");
}

The OpenMP clients of OmniRPC can be executed in a single processor. In
our Omni OpenMP compiler, we need to execute OpenMP program containing
OmniRPC calls in the following environment:

OmniRPC: A Grid RPC Facility for Cluster and Global Computing 135

– Set the environment variable OMP_SCHEDULE to "static,1", meaning cyclic
scheduling with chunk size 1. In the compiler, the default loop scheduling is
block-scheduling which may cause load imbalance when the execution time
of each remote call changes.

– Set the environment variable OMP_NUM_THREADS to the number greater than
the total number of jobs in available remote nodes. The large numbers of
threads are needed to issue the remote procedure call simultaneously for
many remote nodes. Furthermore, multiple requests to the remote nodes may
hide the latency of communication and the overhead of executable invocation
by the local scheduler in remote nodes.

– Compile with “mutex-lock” configuration. As default, the Omni OpenMP
compiler uses the spin-lock for fast synchronization in a multiprocessor. It,
however, sometimes delays the context-switch between threads in a single
processor. The mutex-lock configuration uses the mutex lock of the POSIX
thread library for better operating system scheduling.

In the recent release OpenMP 2.0, there is a new clause, NUM_THREADS to
parallel region directives. This clause requests that a specific number of threads
are used in the regions. This also works for nested regions with task-parallelism
and loop-parallelism as in the following code:

#pragma omp parallel sections num_threads(3)
{
#pragma section
#pragma omp parallel for num_threads(10)

for(i = 0; i < N; i++) OmniRPC_Call("workA",i);
#pragma section
#pragma omp parallel for num_threads(20)

for(j = 0; j < N; j++) OmniRPC_Call("workB",j);
#pragma section

workC();
}

4 Current Status and Future Work

In this paper, we proposed a parallel programming model using the thread-safe
OmniRPC in an OpenMP client program for a cluster and global computing. The
programmer can build a global computing system by using the remote libraries
as its components, without being aware of complexities and hassles of network
programming. OpenMP provides an ease-to-use and simple programming envi-
ronment for a multi-threaded client of OmniRPC. Currently, we have finished
a preliminary implementation of OmniRPC. We are doing several experiments
and evaluations on some parametric search applications.

The current implementation employs a simple round-robin scheduling over
available remote nodes. In the grid environment, the computation time of RPCs
may be greatly influenced by many factors including computational ability of

136 M. Sato et al.

the nodes, the distance to the nodes with respect to the bandwidth of commu-
nication, and the status of the nodes. More sophisticated scheduling using such
dynamic information reported by the local job scheduler in the remote node will
be required for efficient remote execution.

We are also developing a remote executable management tool for OmniRPC,
which sends the IDL of remote functions to generate stubs in remote nodes
automatically. It allows the user to install remote libraries without complex and
time-consuming install procedure of remote executables for many remote nodes.

References

1. I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. Inter-
national Journal of Supercomputer Applications, vol.11, No.2, pages 115–128, 1997.
http://www.globus.org/.

2. M. Sato, H. Nakada S. Sekiguchi, , S. Matsuoka, U. Nagashima, and H. Takagi.
Ninf: A Network based Information Library for Global World-Wide Computing
Infrastructure. Proc. of HPCN’97 (LNCS 1225), pages 491–502, 1997.
http://ninf.etl.go.jp/.

3. H. Casanova and J. Dongarra. Netsolve: A network server for solving computational
science problems. Technical report, University of Tennessee, 1996.

4. http://pdplab.trc.rwcp.or.jp/Omni/

	Introduction
	OmniRPC: A Thread-Safe Remote Procedure Call Facility
	OpenMP Client Using OmniRPC
	Current Status and Future Work

