A Study of Deadline Scheduling for
Client-Server Systems
on the Computational Grid

Atsuko Takefusa, JSPS/TITECH
Henri Casanova, UCSD/SDSC
Satoshi Matsuoka, TITECH/JST
Francine Berman, UCSD/SDSC

http://ninf.is.titech.ac.jp/bricks/

The Computational Grid

= A promising platform for the
deployment of HPC applications

= A crucial issue 1s Scheduling

- Most scheduling works aim at improving
execution time of a single application

E.g., AppLeS, APST, AMWAT, MW,

performance surface, stochastic scheduling,
etc.

NES: Network-enabled Server

«~ Grid software which provides a service on the
network (a.k.a. GridRPC)

- e.g. Ninf, NetSolve, Nimrod
«~ Client-server architecture
~ RPC-style programming model

= Many high-profile applications from science
and engineering are amenable:

-~ Molecular biology, genetic information, operations
research

Scheduling In multi-client multi-server scenario?

3

Scheduling for NES

~ Resource economy model (E.g. [Zhao and
Karamcheti '00], [Plank '00], [Buyya '00])

Grid currency allow owners to “charge” for usage

Choice? $$$$$$$$$$

? No actual economical model IS Implemented

= Nimrod [abramson '00] presents a study of
deadline-scheduling algorithm

Users specify deadlines for the task of their apps.
and can spend more to get tighter deadlines 4

Our Approach

= Our goal Is to minimize
~ The overall occurrences of deadline misses
« The resource cost

~ Each request comes with a deadline
requirement

~ Deadline-scheduling algorithm under simple
economy model

«~ Simulation on Bricks
A performance evaluation system for Grid scheduling

5

The Rest of the Talk

= Overview of Bricks and its improvement
-~ More scalable and realistic simulations

= A Deadline-scheduling algorithm for multi-
client/server NES systems

-~ Load Correction mechanism
. Fallback mechanism

~ EXperiments in multi-client multi-server
scenarios with Bricks

-~ Resource load, resource cost, conservatism of
prediction, efficacy of our deadline-scheduling

Bricks: A Grid Performance
Evaluation System [HPDC '99]

~ A Grid simulation framework to evaluate
-~ Scheduling algorithms
- Scheduling framework components
(e.g. predictors)

= Bricks provides

-~ Reproducible and controlled Grid evaluation
environments

- Flexible setups of simulation environments (Grid
topology, resource model, client model)

-~ Evaluation environment for external Grid
components (e.g., NWS forecaster)

The Bricks Architecture
[HPDC '99]

NetworkPredictor

ServerPredictor

Schedulizy Predictor |

Scheduler [e >|CResourceDB
N
NetworkMonitor ServerMonitor
Client | ()Network) PUPENEr
Client < -
I erver
Client <
D\ sNetwork) > Server

Grid Computing Environment

A Hierarchical Network Topology
on the improved Bricks

V4
Serverh Client Client /

/.

Serverk \/ v
Server— - ~_ Server

/ WAN \\ .

/ Cliers
Client
LAN Server
C“ent \Qnr\/nr
Client Cansar
Cllent Server

Client \Server

— =
\\
ﬁjﬂﬂ_ﬁm@%ﬁ
Network

Deadline-Scheduling

peadﬁne

Job execution ﬁme

any NES scheduling strategies ? Greedy

- assigns requests to the server that completes it
the earliest

« Deadline-scheduling:

-~ Aims at meeting user-supplied job deadline
specifications

10

A Deadline-Scheduling Algorithm
for multi-client/server NES

Estimate job processing time Tsi on each server Si

Tsi = Wsend/Psend + Wrecv/Precv + Ws/Pserv (0 ? 1 < n)

Wsend, Wrecv, Ws: send/recv data size, and logical comp. cost
Psend, Precv, Pserv: estimated send/recv throughput, and performance

Server 1 [_Send | Comp. [Recv |
Server 2
Server 3 | [1] Estimated job execution time

>

2 Compute Tuntil deadline:
Tuntil deadline = Tdeadline - NOW

nQw _ _ Deadline
Tuntil deadline)_

»11

A Deadline-Scheduling
Algorithm (cont.)

3 Compute target processing time T target:
Ttarget = Tuntil deadline X Opt (0 < Opt ? 1)

Tuntil deadline .-
~ig
Ttarget ;o

now
4 Select suitable server Si:
Conditions MinDiff=Min(Diff si)) where Diff si=Ttarget—Tsi?0
Otherwise Min(|Diff|)

Server 1 [Send [T Comp. T Recv |
Sener 2
i Estimated job execution time
> 12

Factors In Deadline-Scheduling
Failures

«~ Accuracy of predictions is not guaranteed

= Monitoring systems do not perceive load
change instantaneously

= Tasks might be out-of-order in FCFS queues

13

ldeas to improve schedule
performance

= Scheduling decisions will result in an increase
In load of scheduled nodes

? Load Correction: Use corrected load values

~ Server can estimate whether it will be able to
complete the task by the deadline

? Fallback: Push a scheduling functionality
to server

14

The Load Correction
Mechanism

=~ Modify load predictions from monitoring system,
Loadsi, as follows:

Loadsi corrected = LOadsi + Njobs Si X pload

Njobs Si: the number of scheduled and unfinished jobs on the
server Si

Pload (= 1): arbitrary value that determines the magnitude

—_— P.re_dlctor
/ Corrected prediction

Scheduler

The Fallback Mechanism

= Server can estimate whether it will be able to
complete the task by the deadline

= Fallback happens when:
Tuntil deadline < Tsend + ETexec + ETrecv &&

Nmax. fallbacks ? Nfallbacks

Tsend : Comm. duration (send)
ETexec, ETrecv: Estimated comm. (recv) and comp. duration

Nfallbacks, Nmax. fallbacks : Total/Max. number of fallbacks

Scheduler

Re-submit /‘\ \j/ 7 Server

. Fallback
Client < Server

16

Experiments

= EXperiments in multi-client multi-server
scenarios with Bricks

-~ Resource load, resource cost, conservatism of
prediction, efficacy of our deadline-scheduling

~ Performance criteria:

- Fallure rate: Percentage of requests that missed
their deadline

-~ Resource cost: Avg. resource cost over all
requests

cost = machine performance
E.g. select 100 Mops/s and 300 Mops/s servers
? Resource cost=200 17

Scheduling Algorithms

= Greedy: Typical NES scheduling strategy
~ Deadline (Opt = 0.5, 0.6, 0.7, 0.8, 0.9)
~ Load Correction (on/off)

= Fallback (Nmax fallbacks = 0/1/2/3/4/5)

18

Configurations of the Bricks
Simulation

= Grid Computing Environment (?75 nodes, 5 Grids)
- # of local domain: 10, # of local domain nodes: 5-10
=~ Avg. LAN bandwidth: 50-100[Mbits/s]
-~ Avg. WAN bandwidth: 500-1000[Mbits/s]
-~ Avg. server performance: 100-500[Mops/s]
=~ Avg. server Load: 0.1

= Characteristics of client jobs
-~ Send/recv data size: 100-5000[Mbits]
- # of instructions: 1.5-1080[Gops]
=~ Avg. intervals of invoking:
60(high load), 90(medium load), 120(low load) [min]

Simulation Environment

= The Presto Il cluster:

128PEs at Matsuoka Lab.,
Tokyo Institute of Technology.

-~ Dual Pentium 111 800MHz
-~ Memory: 640MB
-~ Network: 100Base/TX

= Use APST[Casanova '00] to
deploy Bricks simulations

=« 24 hour simulation x 2,500 runs
(1 sim. takes 30-60 [min]
with Sun JVM 1.3.0+HotSpot)

20

Comparison of Failure Rates

(load: mediiim)
Typical NES scheduling

70

—o— X/X
60 —m—L/x

——L/F

n
< N\ N
@ 40 _A| Fallback leads$ to
¢ \\ / significant|requctions
2 30 N—A 2.9
ol A W D
20 FoadCorrection
10 \V// is NOT| useful

o

Greedy D-0.5 D-0.6 D-0.7 D-0.8 D-0.9 21

Comparison of Failure Rates

70

60

50

]

40
o
é 30
e

20

10

High

Greedy D-0.5 D-06 D-0.7 D-0.8 D-0.9

te [%]

70

60

50

40

30

20

10

Medium

\ _
\ A

N\
N

/

e

Greedy D-05 D-0.6 D-0.7 D-08 D-09

te [%]

70

60

50

40

30

20

10

(Load: high, medium, low)

Low
N lewr /
\
_» S

Greedy D-05 D-06 D-0.7 D-08 D-0.9

= “Low” load leads to improved failure rates

~ All show similar characteristics

22

Comparison of Resource Costs

Avg. Resource Cost

500
450
400
350
300
250
200
150
100
50
0

Greedy leads to

higher costs
|Even conservative Deadline is descent

c.f. Greedy
—o— X/X
—m— L/X
X/F
algorithm becomes less conservative [>~ HF

Trade-off between failure-rate and cost

by adjusting conservatism of Deadline

Greedy D-0.5 D-0.6 D-0.7 D-0.8 D-0.9
23

Comparison of Faillure Rates

(X/F, Nmax. fallbacks = 0-5)

Failure Rate [%]

70

60

(@)
o

S
o

w
o

N
o

[N
o

o

Multiple fallbacks ci}use
significant improve

A\

A

ent

\

el

\/ s

\///

——0
—a—1
—Ah—2
—%—3

4

+5

V

Greedy D-0.5

D-0.6

D-0.7 D-0.8 D-0.9

24

Comparison of Resource Costs
(X/F, Nmax. fallbacks = 0-5)

Avg. Resource Cost

500
450
400
350
300
250

Multiple fallbacks lead to

“small” Increases in costs

- 1

A—A—Z

—%—3

4

—e—5
— NES systems should facilitate multiple fallbacks
— as a part of their standard mechanisms

Greedy D-05 D-06 D-0.7 D-08 D-0.9 25

Related Work

= Economy model:

-~ Nimrod [abramson '00]
. Uses a self-scheduler
. Targets parameter sweep apps. from a single user

= Grid performance evaluation systems:
- MicroGrid [Song '00]

. Emulates a virtual Globus Grid on an actual cluster
- Not appropriate for large numbers of experiments
-~ Simgrid [Casanova '01]
- A trace-based discrete event simulator
- Provides primitives for simulation of application scheduling
. Lacks the network-modeling feature Bricks provides

26

Conclusions

«~ Proposed a deadline-scheduling algorithm for
multi-client/server NES systems, and Load

Correction and Fallback mechanisms

« Investigated performance in multi-client multi-
server scenarios with the improved Bricks

= The experiments showed
- Itis possible to make a trade-off between failure-
rate and resource cost by adjusting conservatism
- Load Correction may not be useful

- Future NES systems should use deadline-scheduling
with multiple fallbacks

27

~ Make Bricks

Future Work

support more sophisticated

economy models
«~ Investigate their feasibility and improve our

deadline-sch

= Implement t
within actua

eduling algorithms

ne deadline-scheduling algorithm
NES systems

(starting wit

N Ninf: http://ninf.apgrid.org/)

28

