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The Computational Grid

? A promising platform for the 
deployment of HPC applications

? A crucial issue is Scheduling
? Most scheduling works aim at improving 

execution time of a single application
E.g., AppLeS, APST, AMWAT, MW, 
performance surface, stochastic scheduling, 
etc.
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NES: Network-enabled Server
? Grid software which provides a service on the 

network (a.k.a. GridRPC)
? e.g. Ninf, NetSolve, Nimrod

? Client-server architecture
? RPC-style programming model
? Many high-profile applications from science 

and engineering are amenable:
? Molecular biology, genetic information, operations 

research
Scheduling in multi-client multi-server scenario?
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Scheduling for NES
? Resource economy model (E.g. [Zhao and 

Karamcheti ’00], [Plank ’00], [Buyya ’00])
Grid currency allow owners to “charge” for usage

$$$$$$$$$$$ Choice?

? No actual economical model is implemented

? Nimrod [abramson ’00] presents a study of 
deadline-scheduling algorithm
Users specify deadlines for the task of their apps. 

and can spend more to get tighter deadlines
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Our Approach
? Our goal is to minimize

? The overall occurrences of deadline misses
? The resource cost

? Each request comes with a deadline 
requirement

? Deadline-scheduling algorithm under simple 
economy model

? Simulation on Bricks
A performance evaluation system for Grid scheduling
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The Rest of the Talk
? Overview of Bricks and its improvement

? More scalable and realistic simulations

? A Deadline-scheduling algorithm for multi-
client/server NES systems
? Load Correction mechanism
? Fallback mechanism

? Experiments in multi-client multi-server 
scenarios with Bricks
? Resource load, resource cost, conservatism of 

prediction, efficacy of our deadline-scheduling
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Bricks: A Grid Performance 
Evaluation System [HPDC ’99]
? A Grid simulation framework to evaluate 

? Scheduling algorithms
? Scheduling framework components 

(e.g. predictors)

? Bricks provides
? Reproducible and controlled Grid evaluation 

environments
? Flexible setups of simulation environments (Grid 

topology, resource model, client model)
? Evaluation environment for external Grid 

components (e.g., NWS forecaster)
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The Bricks Architecture 
[HPDC ’99]
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A Hierarchical Network Topology 
on the improved Bricks
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Deadline-Scheduling

? Many NES scheduling strategies ? Greedy
? assigns requests to the server that completes it 

the earliest

? Deadline-scheduling:
? Aims at meeting user-supplied job deadline 

specifications

Server 1

Server 2

Server 3
Job execution time

Deadline$

$$$$$

$$
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A Deadline-Scheduling Algorithm 
for multi-client/server NES

1 Estimate job processing timeTsi on each server Si：

Tsi = Wsend/Psend + Wrecv/Precv + Ws/Pserv (0 ? i < n)
Wsend, Wrecv, Ws: send/recv data size, and logical comp. cost
Psend, Precv, Pserv: estimated send/recv throughput, and performance

2 Compute Tuntil deadline:
Tuntil deadline = Tdeadline - now

Server 1
Server 2
Server 3

Comp.

Estimated job execution time

Send Recv

now Tuntil deadline
Deadline
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A Deadline-Scheduling 
Algorithm (cont.)

3 Compute target processing time Ttarget:
Ttarget = Tuntil deadline x Opt (0 < Opt ? 1)

4 Select suitable server Si:
Conditions：MinDiff=Min(Diff si) where Diff si=Ttarget–Tsi?0

Otherwise Min(|Diff|)

now

Tuntil deadline

Ttarget

Server 1
Server 2
Server 3

Comp.

Estimated job execution time

Send Recv
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Factors in Deadline-Scheduling 
Failures
? Accuracy of predictions is not guaranteed
? Monitoring systems do not perceive load 

change instantaneously
? Tasks might be out-of-order in FCFS queues
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Ideas to improve schedule 
performance
? Scheduling decisions will result in an increase 

in load of scheduled nodes

? Server can estimate whether it will be able to 
complete the task by the deadline

? Load Correction: Use corrected load values

? Fallback: Push a scheduling functionality 
to server
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The Load Correction 
Mechanism
? Modify load predictions from monitoring system,

LoadSi, as follows:
LoadSi corrected = LoadSi + Njobs Si x pload
Njobs Si: the number of scheduled and unfinished jobs on the 

server Si

Pload (= 1): arbitrary value that determines the magnitude

Scheduler

NetworkMonitor ServerMonitor

ResourceDB

NetworkPredictor
ServerPredictor

Predictor
Corrected prediction
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The Fallback Mechanism
? Server can estimate whether it will be able to 

complete the task by the deadline
? Fallback happens when:

Tuntil deadline < Tsend + ETexec + ETrecv &&

Nmax. fallbacks ? Nfallbacks

Tsend : Comm. duration (send)
ETexec, ETrecv: Estimated comm. (recv) and comp. duration 

Nfallbacks, Nmax. fallbacks : Total/Max. number of fallbacks

Client Server

Scheduler
Server

Fallback
Re-submit
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Experiments
? Experiments in multi-client multi-server 

scenarios with Bricks
? Resource load, resource cost, conservatism of 

prediction, efficacy of our deadline-scheduling

? Performance criteria:
? Failure rate: Percentage of requests that missed 

their deadline
? Resource cost: Avg. resource cost over all 

requests
cost = machine performance
E.g. select 100 Mops/s and 300 Mops/s servers 

? Resource cost=200
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Scheduling Algorithms
? Greedy: Typical NES scheduling strategy
? Deadline (Opt = 0.5, 0.6, 0.7, 0.8, 0.9)
? Load Correction (on/off)
? Fallback (Nmax fallbacks = 0/1/2/3/4/5)
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Configurations of the Bricks 
Simulation
? Grid Computing Environment (?75 nodes, 5 Grids)

? # of local domain: 10, # of local domain nodes: 5-10
? Avg. LAN bandwidth: 50-100[Mbits/s]
? Avg. WAN bandwidth: 500-1000[Mbits/s]
? Avg. server performance: 100-500[Mops/s]
? Avg. server Load: 0.1

? Characteristics of client jobs
? Send/recv data size: 100-5000[Mbits]
? # of instructions: 1.5-1080[Gops]
? Avg. intervals of invoking: 

60(high load), 90(medium load), 120(low load) [min]
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Simulation Environment
? The Presto II cluster:

128PEs at Matsuoka Lab., 
Tokyo Institute of Technology.
? Dual Pentium III 800MHz
? Memory: 640MB
? Network: 100Base/TX

? Use APST[Casanova ’00] to 
deploy Bricks simulations

? 24 hour simulation x 2,500 runs
(1 sim. takes 30-60 [min] 
with Sun JVM 1.3.0+HotSpot)
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Comparison of Failure Rates
(load: medium)
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Comparison of Failure Rates
(Load: high, medium, low)

? “Low” load leads to improved failure rates
? All show similar characteristics
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Comparison of Resource Costs
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Comparison of Failure Rates
(x/F, Nmax. fallbacks = 0-5)
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Comparison of Resource Costs
(x/F, Nmax. fallbacks = 0-5)
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Related Work
? Economy model: 

? Nimrod [abramson ’00] 
? Uses a self-scheduler
? Targets parameter sweep apps. from a single user

? Grid performance evaluation systems:
? MicroGrid [Song ’00]

? Emulates a virtual Globus Grid on an actual cluster
? Not appropriate for large numbers of experiments

? Simgrid [Casanova ’01]
? A trace-based discrete event simulator
? Provides primitives for simulation of application scheduling
? Lacks the network-modeling feature Bricks provides
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Conclusions
? Proposed a deadline-scheduling algorithm for 

multi-client/server NES systems, and Load 
Correction and Fallback mechanisms

? Investigated performance in multi-client multi-
server scenarios with the improved Bricks

? The experiments showed
? It is possible to make a trade-off between failure-

rate and resource cost by adjusting conservatism
? Load Correction may not be useful
? Future NES systems should use deadline-scheduling 

with multiple fallbacks
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Future Work
? Make Bricks support more sophisticated 

economy models
? Investigate their feasibility and improve our 

deadline-scheduling algorithms
? Implement the deadline-scheduling algorithm 

within actual NES systems 
(starting with Ninf: http://ninf.apgrid.org/)


