
1

A Study of Deadline Scheduling for
Client-Server Systems

on the Computational Grid

Atsuko Takefusa, JSPS/TITECH
Henri Casanova, UCSD/SDSC

Satoshi Matsuoka, TITECH/JST
Francine Berman, UCSD/SDSC

http://ninf.is.titech.ac.jp/bricks/

2

The Computational Grid

? A promising platform for the
deployment of HPC applications

? A crucial issue is Scheduling
? Most scheduling works aim at improving

execution time of a single application
E.g., AppLeS, APST, AMWAT, MW,
performance surface, stochastic scheduling,
etc.

3

NES: Network-enabled Server
? Grid software which provides a service on the

network (a.k.a. GridRPC)
? e.g. Ninf, NetSolve, Nimrod

? Client-server architecture
? RPC-style programming model
? Many high-profile applications from science

and engineering are amenable:
? Molecular biology, genetic information, operations

research
Scheduling in multi-client multi-server scenario?

4

Scheduling for NES
? Resource economy model (E.g. [Zhao and

Karamcheti ’00], [Plank ’00], [Buyya ’00])
Grid currency allow owners to “charge” for usage

$$$$$$$$$$$ Choice?

? No actual economical model is implemented

? Nimrod [abramson ’00] presents a study of
deadline-scheduling algorithm
Users specify deadlines for the task of their apps.

and can spend more to get tighter deadlines

5

Our Approach
? Our goal is to minimize

? The overall occurrences of deadline misses
? The resource cost

? Each request comes with a deadline
requirement

? Deadline-scheduling algorithm under simple
economy model

? Simulation on Bricks
A performance evaluation system for Grid scheduling

6

The Rest of the Talk
? Overview of Bricks and its improvement

? More scalable and realistic simulations

? A Deadline-scheduling algorithm for multi-
client/server NES systems
? Load Correction mechanism
? Fallback mechanism

? Experiments in multi-client multi-server
scenarios with Bricks
? Resource load, resource cost, conservatism of

prediction, efficacy of our deadline-scheduling

7

Bricks: A Grid Performance
Evaluation System [HPDC ’99]
? A Grid simulation framework to evaluate

? Scheduling algorithms
? Scheduling framework components

(e.g. predictors)

? Bricks provides
? Reproducible and controlled Grid evaluation

environments
? Flexible setups of simulation environments (Grid

topology, resource model, client model)
? Evaluation environment for external Grid

components (e.g., NWS forecaster)

8

The Bricks Architecture
[HPDC ’99]

Grid Computing EnvironmentGrid Computing Environment

Client

Client

Client

Network
Network Server

Server

ServerNetwork
Network

Network
Network

Scheduler

NetworkMonitor ServerMonitor

Scheduling UnitScheduling Unit

ResourceDB

NetworkPredictor
ServerPredictor

Predictor

9

A Hierarchical Network Topology
on the improved Bricks

Client

ServerClient

Server

Client

Server

Client

Server

Client

Client
Server

Client

Server

Client

Server

Client

Server

Client

Server

Server

Client

WAN

LAN

Local Domain

Network
Network

10

Deadline-Scheduling

? Many NES scheduling strategies ? Greedy
? assigns requests to the server that completes it

the earliest

? Deadline-scheduling:
? Aims at meeting user-supplied job deadline

specifications

Server 1

Server 2

Server 3
Job execution time

Deadline$

$$$$$

$$

11

A Deadline-Scheduling Algorithm
for multi-client/server NES

1 Estimate job processing timeTsi on each server Si：

Tsi = Wsend/Psend + Wrecv/Precv + Ws/Pserv (0 ? i < n)
Wsend, Wrecv, Ws: send/recv data size, and logical comp. cost
Psend, Precv, Pserv: estimated send/recv throughput, and performance

2 Compute Tuntil deadline:
Tuntil deadline = Tdeadline - now

Server 1
Server 2
Server 3

Comp.

Estimated job execution time

Send Recv

now Tuntil deadline
Deadline

12

A Deadline-Scheduling
Algorithm (cont.)

3 Compute target processing time Ttarget:
Ttarget = Tuntil deadline x Opt (0 < Opt ? 1)

4 Select suitable server Si:
Conditions：MinDiff=Min(Diff si) where Diff si=Ttarget–Tsi?0

Otherwise Min(|Diff|)

now

Tuntil deadline

Ttarget

Server 1
Server 2
Server 3

Comp.

Estimated job execution time

Send Recv

13

Factors in Deadline-Scheduling
Failures
? Accuracy of predictions is not guaranteed
? Monitoring systems do not perceive load

change instantaneously
? Tasks might be out-of-order in FCFS queues

14

Ideas to improve schedule
performance
? Scheduling decisions will result in an increase

in load of scheduled nodes

? Server can estimate whether it will be able to
complete the task by the deadline

? Load Correction: Use corrected load values

? Fallback: Push a scheduling functionality
to server

15

The Load Correction
Mechanism
? Modify load predictions from monitoring system,

LoadSi, as follows:
LoadSi corrected = LoadSi + Njobs Si x pload
Njobs Si: the number of scheduled and unfinished jobs on the

server Si

Pload (= 1): arbitrary value that determines the magnitude

Scheduler

NetworkMonitor ServerMonitor

ResourceDB

NetworkPredictor
ServerPredictor

Predictor
Corrected prediction

16

The Fallback Mechanism
? Server can estimate whether it will be able to

complete the task by the deadline
? Fallback happens when:

Tuntil deadline < Tsend + ETexec + ETrecv &&

Nmax. fallbacks ? Nfallbacks

Tsend : Comm. duration (send)
ETexec, ETrecv: Estimated comm. (recv) and comp. duration

Nfallbacks, Nmax. fallbacks : Total/Max. number of fallbacks

Client Server

Scheduler
Server

Fallback
Re-submit

17

Experiments
? Experiments in multi-client multi-server

scenarios with Bricks
? Resource load, resource cost, conservatism of

prediction, efficacy of our deadline-scheduling

? Performance criteria:
? Failure rate: Percentage of requests that missed

their deadline
? Resource cost: Avg. resource cost over all

requests
cost = machine performance
E.g. select 100 Mops/s and 300 Mops/s servers

? Resource cost=200

18

Scheduling Algorithms
? Greedy: Typical NES scheduling strategy
? Deadline (Opt = 0.5, 0.6, 0.7, 0.8, 0.9)
? Load Correction (on/off)
? Fallback (Nmax fallbacks = 0/1/2/3/4/5)

19

Configurations of the Bricks
Simulation
? Grid Computing Environment (?75 nodes, 5 Grids)

? # of local domain: 10, # of local domain nodes: 5-10
? Avg. LAN bandwidth: 50-100[Mbits/s]
? Avg. WAN bandwidth: 500-1000[Mbits/s]
? Avg. server performance: 100-500[Mops/s]
? Avg. server Load: 0.1

? Characteristics of client jobs
? Send/recv data size: 100-5000[Mbits]
? # of instructions: 1.5-1080[Gops]
? Avg. intervals of invoking:

60(high load), 90(medium load), 120(low load) [min]

20

Simulation Environment
? The Presto II cluster:

128PEs at Matsuoka Lab.,
Tokyo Institute of Technology.
? Dual Pentium III 800MHz
? Memory: 640MB
? Network: 100Base/TX

? Use APST[Casanova ’00] to
deploy Bricks simulations

? 24 hour simulation x 2,500 runs
(1 sim. takes 30-60 [min]
with Sun JVM 1.3.0+HotSpot)

21

Comparison of Failure Rates
(load: medium)

0

10

20

30

40

50

60

70

Greedy D-0.5 D-0.6 D-0.7 D-0.8 D-0.9

F
a

ilu
re

 R
a

te
 [
%

]

x/x
L/x
x/F
L/F

Typical NES scheduling

Fallback leads to
significant reductions

Load Correction
is NOT useful

22

Comparison of Failure Rates
(Load: high, medium, low)

? “Low” load leads to improved failure rates
? All show similar characteristics

0

10

20

30

40

50

60

70

Greedy D-0.5 D-0.6 D-0.7 D-0.8 D-0.9

F
a

ilu
re

 R
a

te
[%

]

x/x

L/x

x/F

L/F

0

10

20

30

40

50

60

70

Greedy D-0.5 D-0.6 D-0.7 D-0.8 D-0.9

F
a

ilu
re

 R
a

te
 [%

]

x/x

L/x

x/F

L/F

0

10

20

30

40

50

60

70

Greedy D-0.5 D-0.6 D-0.7 D-0.8 D-0.9

F
a

ilu
re

 R
a

te
 [%

]

x/x

L/x

x/F

L/F

High LowMedium

23

Comparison of Resource Costs

0

50

100

150

200

250

300

350

400

450

500

Greedy D-0.5 D-0.6 D-0.7 D-0.8 D-0.9

A
vg

. R
es

ou
rc

e
C

os
t

x/x

L/x

x/F

L/F

Greedy leads to
higher costs

Costs decrease when the
algorithm becomes less conservative

Even conservative Deadline is descent
c.f. Greedy

Trade-off between failure-rate and cost
by adjusting conservatism of Deadline

24

Comparison of Failure Rates
(x/F, Nmax. fallbacks = 0-5)

0

10

20

30

40

50

60

70

Greedy D-0.5 D-0.6 D-0.7 D-0.8 D-0.9

F
a

ilu
re

 R
a

te
 [
%

] 0

1

2

3

4

5

Multiple fallbacks cause
significant improvement

25

Comparison of Resource Costs
(x/F, Nmax. fallbacks = 0-5)

0

50

100

150

200

250

300

350

400

450

500

Greedy D-0.5 D-0.6 D-0.7 D-0.8 D-0.9

A
vg

.
R

e
so

u
rc

e
 C

o
st 0

1

2

3

4

5

Multiple fallbacks lead to
“small” increases in costs

NES systems should facilitate multiple fallbacks
as a part of their standard mechanisms

26

Related Work
? Economy model:

? Nimrod [abramson ’00]
? Uses a self-scheduler
? Targets parameter sweep apps. from a single user

? Grid performance evaluation systems:
? MicroGrid [Song ’00]

? Emulates a virtual Globus Grid on an actual cluster
? Not appropriate for large numbers of experiments

? Simgrid [Casanova ’01]
? A trace-based discrete event simulator
? Provides primitives for simulation of application scheduling
? Lacks the network-modeling feature Bricks provides

27

Conclusions
? Proposed a deadline-scheduling algorithm for

multi-client/server NES systems, and Load
Correction and Fallback mechanisms

? Investigated performance in multi-client multi-
server scenarios with the improved Bricks

? The experiments showed
? It is possible to make a trade-off between failure-

rate and resource cost by adjusting conservatism
? Load Correction may not be useful
? Future NES systems should use deadline-scheduling

with multiple fallbacks

28

Future Work
? Make Bricks support more sophisticated

economy models
? Investigate their feasibility and improve our

deadline-scheduling algorithms
? Implement the deadline-scheduling algorithm

within actual NES systems
(starting with Ninf: http://ninf.apgrid.org/)

