Performance Analysis of Scheduling and Replication Algorithms on
Grid Datafarm Architecture for High-Energy Physics Applications

Atsuko Takefusa
Ochanomizu University
takefusa@is.ocha.ac.jp

Satoshi Matsuoka
Tokyo Institute of Technology /
National Institute of Informatics
matsu@is.titech.ac.jp

Abstract

Data Grid 1s a Grid environment for ubiquitous ac-
cess and analysis of large-scale data. Because Data
Grid is in the early stages of development, the perfor-
mance of its petabyte-scale models in a realistic data
processing setting has not been well investigated. By
enhancing our Bricks Grid simulator to accomodated
Data Grid scenarios, we investigate and compare the
performance of different Data Grid models. These
are categorized mainly as either central or tier models;
they employ various scheduling and replication strate-
gies under realistic assumptions of job processing for
CERN LHC experiments on the Grid Datafarm system.
QOur results show that the central model is efficient but
that the tier model, with its greater resources and its
speculative class of background replication policies, are
quite effective and achieve higher performance, while
each tier is smaller than the central model.

1. Introduction

Data Grid is a Grid environment for ubiquitous ac-
cess and analysis of large-scale data. Several recent
projects have been designed and implemented to an-
alyze data that will be derived from scientific experi-
ments such as the CERN LHC (Large Hadron Collider)
experiment [15] starting in 2007. Grid technology will
play an essential role in constructing worldwide data-
analysis environments where thousands of physicists
will collaborate and compete in particle physics data
analysis on new energy frontiers. To process such large
amounts of data, a global-scale Grid computing model

Osamu Tatebe

Grid Technology Research Center, AIST

o.tatebe@aist.go.jp

Youhei Morita
High Energy Accelerator
Research Organization (KEK)
youhei.morita@kek.jp

consisting of multi-tier worldwide Regional Centres has
been studied by the MONARC project [2].

Because petascale data is seldom updated and is of-
ten accessed in read-only mode. This means that file
replication can be used to promote the efficient sharing
of such large-scale data worldwide by improving load
balancing, access bandwidth, disk usage, and fault tol-
erance. The basic technologies needed for file repli-
cation are fast long-distance file transfer and efficient
worldwide replica management. Moreover, efficient ex-
ecution depends on the management of scheduling is-
sues, such as how to select the best replication pro-
cedure, how to choose the most appropriate compute
nodes, and how to allocate output and temporary file
space. File replication adds the complexity of data
movement to the scheduling issues: for instance, what
file is to be replicated, when and where the replication
is to occur, and also when and which replica is to be
deleted to maintain storage capacity.

However, since Data Grid is still in the development
stage, there has not been sufficient investigation into
the suitability of proposed Data Grid architectures or
into the performance of Data Grid systems in large-
scale, realistic applications with various scheduling and
replication policies.

We simulate the performance of different Data Grid
system models that employ various replication and
scheduling strategies. These simulations apply realistic
assumptions of job processing for CERN LHC experi-
ments to the Grid Datafarm system [4, 14] by using the
Bricks Grid simulator [3]. This simulator is enhanced
with new Data Grid operation extensions, mainly for
comparing centralized data storage and processing vs.
MONARC-style hierarchical distributed configuration.
Our results show that the central model is efficient

but that the tier model, with its greater amount of
resources and its speculative class of scheduling and
replication policies, achieves higher performance, while
each tier is smaller than the central model.

2. Grid Datafarm Architecture

For efficient data processing of data-intensive appli-
cations, both data access bandwidth and CPU power
must increase as the amount of data increases. In order
for the Data Grid to offer shared petabyte-scale data
processing, 1t will be necessary to have not only fast file
transfer and efficient replica management but also fast
data access and processing. Even TB/s-scale band-
width is not enough to process petabyte-scale data.
In general, such bandwidth scaling to TB/s does not
seem to be feasible in a distributed computing envi-
ronment such as the Grid. However, large-scale data-
intensive computing frequently involves high degrees of
local data access, which could be exploited to compen-
sate for the lack of global bandwidth.

Because of the localized nature of such data access,
and because of salient Grid properties such as schedul-
ing, load balancing, fault tolerance, security, etc., it
would be disadvantageous to have a separate I/O across
the network independent from the compute nodes. It
would be better to strive for tight coupling of storage
to the computation to achieve terascale data processing
goals. In other words, it is better to adopt the “owner
computes” strategy, or the “move the computation to
the data” approach, than to adopt the “move the com-
putation to the data” approach used by most data-
intensive processing systems, such as HPSS [6]. For
highly data-parallel applications, the owner-computes
strategy is much more scalable and is far better suited
to the requirements of the Grid.

To fully exploit the localization of data access for
scalable T/O bandwidth, local T/O bandwidth of the
local disks on each node should be utilized. In the
Grid Datafarm architecture, every node has large and
fast local disks, and acts as both a storage node and
a compute node, which together are called a Gfarm
filesystem node. When each node has 1-TB of local
storage, a 1000-node cluster provides an online 1-PB
storage, which is managed by a Gfarm filesystem as a
single filesystem image in a scalable fashion.

The main features of the Grid Datafarm are to sup-
port extreme disk I/O bandwidth scales to the TB/s
range and to support file replica management for fault
tolerance and load balancing. To achieve an extreme
disk T/O bandwidth, the local disk /O of each node is
naturally exploited by two new features: file-affinity
scheduling and a local file view. Any file can be

Other filesystems

Gfarm parallel I/0
local and index
file views

Gfarm filesystem nodes

Affinity scheduling of process and disk storage
to maximize disk I/0 and network bandwidth

Figure 1. Gfarm file system.

replicated anytime for fault tolerance and to improve
system performance, which is managed by filesystem
metadata consistently. The replica catalog will be uti-
lized by a scheduler or a resource broker to determine
the best storage-and-compute nodes.

The Gfarm filesystem is a parallel filesystem for
petascale data-intensive computing on a Grid using
local disks of every node. Figure 1 depicts the com-
ponents of the Gfarm filesystem, Gfarm filesystem
nodes and Gfarm metadata servers, that provide huge,
petabyte-range disk space with scalable disk I/O band-
width and fault tolerance.

Each Gfarm filesystem node has large and fast local
disks, so it acts as both a storage node and a com-
pute node. Running on each filesystem node is an 1/0
daemon, called g¢fsd, to facilitate remote file operations
with access control as well as user authentication, file
replication, fast program invocation, and node resource
status monitoring. A metadata server manages filesys-
tem metadata including owner, access permission, ac-
cess times, and replica catalog data.

The filesystem manages a ranked group of files as a
single Gfarm file. Each file in a Gfarm file is called a
Gfarm file fragment and is stored on a filesystem node
or on several such nodes by file replication. By de-
fault, a file group can be accessed as a single large file
in 1ts global view, or its constituent file fragments on
each node can be accessed individually in either local
or indez file view. This is facilitated by the Gfarm par-
allel I/O APIs. The filesystem could be regarded as an
extension of a striping cluster filesystem in that each
file fragment has an arbitrary length and can be stored
on any node. Refer to [14] for further detail, including
other features such as fast file transfer and replication,
file recovery and regeneration, and performance evalu-
ation.

In this evaluation, we assume the Grid Datafarm as

— NetworkPredictor

Scheduling Unit i
g/ P;edIthr ServerPredictor

Scheduler = ResourceDB
/7

NetworkMonitor ServerMonitor
13

., | ReplicaManager * ...
K <"Server ",

Client|-—| Nt Server ¢
: — 5 + -~
Gtz /' Processor
{_) Neivork
. : | Disk
Client —— A :

Grid Computing Env.
Gfarm Filesystem

Figure 2. The Bricks architecture.

theunderlying Data Grid architecture being simulated,
but our results are applicable to other Data Grid sys-
tems in that the only assumption we make on GFarm
is its massive local bandwidth and that the owner-
computes rule is the norm unless replication occurs.
A large Data Grid systems is necessary in either case.

3. Data Grid Extension of the Bricks
Grid Simulator

The Bricks Grid simulation framework [3] is a Java-
based discrete event simulator that allows users to
evaluate the performance of various scheduling algo-
rithms and scheduling framework components in Grid
environments. Bricks provides canonical Grid schedul-
ing modules (called the Scheduling Unit) and vari-
ous scheduling-analysis-simulating dynamic Grid envi-
ronments (called the Grid Computing Environment)
[13, 12] (Figure 2).

In order to evaluate the performance of various Data
Grid application scenarios, we extended Bricks to sim-
ulate the following features:

e Local disk T/O overheads
e Replica Manager
o Replica Catalog

e Disk management mechanism
3.1. Local Disk 1/0 Overheads

For accurate simulation of petabyte-scale data in-
tensive computing, local 1/O access overhead becomes

Host A Host B

P

Processor A rocessor B
Networks A to B]

e e N
 DiskA) 4 _DiskB >
iiiiiai ::' I

Networks Bto A

write results

Figure 3. Bricks simulation steps for Data in-
tensive computing.

non-negligible. We therefore extend Bricks to repre-
sent the behaviors of storage, such as local I/O over-
head and data management, with additional (storage)
queues. Each job in the Bricks simulation is processed
as shown in Figure 3. The solid lines indicate a job
workflow for an owner-computes case: read data from
Disk B, process the job on Processor B, and store the
results on Disk B. Conversely, the solid+dotted lines
indicate a job workflow when data required for a job is
not stored locally on the compute processor: read data
from Disk A via Networks A to B and Disk B, process
the job on Processor B, and store the results on Disk A
via Disk B and Networks B to A. (There could be other
situations, such as when the data is remote but the re-
sults are stored locally.) In the simulation, Processor
and Disk queues process jobs in a time-sharing manner
and Network queues process them in a first-comes-first-
served manner with logical packet transmissions. Each
Disk queue is shared by both data read and data write.

3.2. Replica Manager and Replica Catalog

For efficient data processing, the distribution of data
required by each data-intensive job is important not
only for the scalability of data access bandwidth and
CPU power, but also for load balancing and fault tol-
erance, as described in Section 2. Two new modules,
a replica manager and a replica catalog, are added in
the Scheduling Unit. The replica manager takes care
of the background file replication algorithms described
in Section 5.2. It periodically collects monitoring in-
formation over Grid resources and controls file replica
creation, migration, and even elimination, all in the
background. The replica catalog module manages a

list of mappings from a logical filename to a physical
storage node to support a Gfarm filesystem.

3.3. Disk Management Mechanism

”Disk management” i1s an important issue for Data
Grid systems because petabyte-scale data for data-
intensive applications cannot be stored on any local
disk on the Grid, and because replica generation for
load balancing and fault tolerance will further reduce
available disk space. In order to avoid a shortage of
disk space, Bricks manages each amount of available
disk space on the Grid and eliminates data appropri-
ately. The details of our replica elimination algorithm
are described in Section 5.3

4. Simulation Modeling

4.1. Modeling of Large Data Grid Application:
CERN LHC Experiments

In LHC experiments at CERN, observed data
(events) are collected from a huge number of collisions
of particles and analyzed through different levels of a
data processing hierarchy [2] as follows:

Large - RAW — ESD : Reconstruct RAW ob-
served data, create ESD (Event Summary Data
object) (2-4 times/year).

Medium - ESD — AOD : Using ESD, redefine
AOD (Analysis Object Data) (once/month).

Small - AOD — TAG : Using AOD, redefine TAG
data (once/4 hours).

A typical job for each job class (Large, Medium, or
Small) in the experiments is an independent parallel
data processing of a collection of millions of physical
events. Each job is handled on a Data Grid system as
follows:

1. A user (a physicist) at the client machine invokes
a job.

2. The Data Grid scheduler selects a suitable set of
servers.

3. Each server loads a data fragment required for
the job, over the Grid if the fragment is non-local.

4. Each server processes the individual portions of
the job that have been assigned to it.

5. The servers send the output to specified stor-
ages locations (the client receives only statistical
data).

process on
owner server

process on
owner server

copy data
and process

/@on a different

read server

process
- “%O write

Tier model

Central model

Figure 4. Central model (left) and Tier model
(right).

The processing time for a job is given as:
ResponseTime = Read + Process + Write (1)

ResponseTime, Read, Process, and Write indicate,
respectively, the total duration of job processing on
the Data Grid and the time it takes to read the input
data, process the job, and write the output data.

4.2. Data Grid Architecture

The MONARC project proposed a multi-tier re-
gional center model. At the time the MONARC report
was published, the model was assumed to be neces-
sary due to limitations on the computational and stor-
age resources that could be concentrated at a single
site. However, remarkable improvement in commod-
ity PC technologies, as well as advances in clustering
technologies, may make it feasible to construct huge
clusters with petascale online storage, thus providing
appropriate data processing capacity, as reported in [2].
In fact, in the Grid Datafarm project we constructed
several design studies and proof-of-concept large-scale
storage cluster prototypes that increasingly convinced
us that such clusters could be constructed feasibly by
2007. Thus, a meaningful comparison would be to in-
vestigate how much of a performance penalty we might
suffer by distributing storage and computational re-
sources in the MONARC style.

Towards this end, and as observed in Figure 4, we
compare two categories of models: the central model,
in where all the jobs are processed at a single site,
and the MONARC-style tier model, in which jobs are
processed according to their hierarchical levels. For

the tier model, Data Grid systems must facilitate suit-
able scheduling and replication policies to deploy user
jobs and maintain data replicas over the resources for
efficient data processing. We discuss the details of
scheduling and replication algorithms for tier models
in Section 5.

5. Scheduling and Replication Policies
for Tier Model

Tier-based Data Grid systems must facilitate suit-
able scheduling and replication. On the one hand, cre-
ating a large number of replicas for this purpose bal-
ances the load and minimizes response time. On the
other hand, storage capacity and network bandwidth
pressures become significant, penalizing performance.
To resolve this situation, we evaluate several on-line
scheduling and replication policies, some of which we
originated, and combine them in valid ways (note that
some combinations do not make sense) under actual
HEP application scenarios.

5.1. On-line Scheduling Algorithms and Policies

To optimize performance, the on-line scheduler de-
termines the DataSourceHost (owner of input data),
ComputeHost (computational resources), and DataDes-
tinationHost (store result values) for each incoming
request, given the current status of the system. If
DataSourceHost != ComputeHost or ComputeHost =
DataDestinationHost, then input or output data are
replicated ”on demand”. On the other hand, the
Replica Managers periodically collect monitoring in-
formation over the Grid resources and manage replica
creation, migration, and their elimination ”in the back-
ground”.

The set of on-line scheduling algorithms is as follows:

Greedy : The greedy on-line scheduling algorithm de-
scribed in [7] as MCT (Minimum Completion
Time). The scheduler assigns the request to
whichever host completes it firstest in Equa-
tion (1). The job reads the input data from the
appropriate host, and the output is stored on the
compute host. All subsequent scheduling policies
are based on MCT.

OwnerComputes : The scheduler selects whichever

compute host owns the input data and completes

the request first. In this policy, DataSourceHost,

ComputeHost, and DataDestinationHost are dis-

patched to the same host.

ot

LoadBound-Read : The scheduler selects a compute
host with MCT from the host group that sat-
isfies:

PerfSpeciﬁed > P@rfEstimated (2)

Perfpstimateda = ProcPerf/(LoadAvg + 1) (3)

ProcPerf,

LoadAvg, Perfrstimated, and Per fspecifieq indi-
cate the performance of a compute host, mon-
itored load average of the host, estimated per-
formance of the host, and a scheduling parame-
ter to determine the frequency of replications, re-
spectively. Specifying a smaller Per fspecifiea Will
increase the number of on-demand replications.
The job reads input data from the appropriate
host, and the output is stored in the Compute-
Host.

LoadBound-Write : The scheduler
selects whichever compute host has the smallest
ResponseTimegstimated:

ResponseTimegstimated =

Readpstimated + Process gstimated (4)

If the selected host does not satisfy Equation (2),
then the result is sent to the host that maximizes
Equation (3).

5.2. Replication Policies

Replica Managers periodically collect the status of
each host’s resources and trigger replica creation and
migration in the following way:

LoadBound-Replication : The Replica Manager peri-
odically computes Per fgstimatea in Equation (3)
for all the hosts. TIf Equation (2) is satisfied,
the Replica Manager triggers replication from the
host with the smallest Per fgstimated to the host
with the largest Perfgstimated-

The Replica Manager actually creates a replica
for data with the largest Access Rate AR:

AR = NAccesses/(TCurrent - TStored) (5)

Teurrent and T'sioreq iIndicate the current time and
the time the data was stored, while N gcces5es 1N-
dicates the total number of times the data was
accessed in the period from Tsiored 10 Tourrent-

Aggressive-Replication : Aggressive-Replication is the
background replication algorithm by which the

Replica Manager always generates a replica of all
the data generated by each job. When a client
host notifies the Replica Manager that a job has
been processed, the Replica Manager generates a
replica of the data and sends it to whichever host
maximizes Perfrstimated-

Our simulations employ the combinations of
four scheduling algorithms (OwnerComputes, Greedy,
LoadBound-Read, and LoadBound-Write) and three
replication policies (LoadBound-Replication, Aggressive-
Replication, and ” Do Nothing” (no background replica-
tion policies)).

5.3. Replica Elimination Algorithm

We assume that some host will be the "home” for the
original archival storage of any given data, and that all
data transmission is for data replication, i.e., data are
copied rather than moved. For example, if the Data-
SourceHost and the ComputeHost are different, all data
required for the job is copied from the DataSourceHost
storage to the ComputeHost storage. If the storage
space for a job turns out to be insufficient (checked
by the Scheduler), or some x% of hosts do not embody
some y% of available storage space within the entire
Data Grid, ” replica elimination” is performed (the pa-
rameters x and y are specified at run time). We use
the following ”replica elimination” algorithm for over-
capacity storage:

1. Select data that have replicas within the Data
Grid environment.

2. Sort all the selected data by the last recently used
(LRU) time.

3. Calculate AREjimination for the first N data on
the list:

ARElimination = AR/NGopies (6)

Ncopies indicates the total number of replicas
within the environment.

4. Select and eliminate replica for data with mini-
mum AREjimination Trom the first N data while
maintaining the following condition:

Total DiskSize x Compactness
> Available DiskSize (7)

Total DiskSize and Available DiskSize indicate
the total and available storage space on the entire
Data Grid, while Compactness shows the param-
eter to control the frequency of replica elimina-
tions.

T'ef@@) 53:\%

Figure 5. Simulated Grid Datafarm architec-
ture.

5. If Equation (7) is not satisfied, return to Step 3
for the next N data.

In our simulation, N is set to 10.

6. Experiments

We investigate the performance of the central and
tier models under various scheduling and replication
policies. We compare their job response times on the
Grid Datafarm architecture.

6.1. Experimental Environment for the Grid Data-
farm Architecture

In our experiments, we assume a Data Grid model
(Figure 5) based on central or multi-tier worldwide re-
gional centers as considered in [2]. Each regional center
is assumed to be based on the Grid Datafarm archi-
tecture described earlier. Each node in each regional
center has local local disks (some large and some fast
ones) that are mainly utilized for data processing. On
the Grid Datafarm architecture, the aggregation of lo-
cal I/O bandwidth to process a job is as follows:

Totall/OBandwidth =
Locall/OBandwidth x £ofnodes (8)

Fofnodes indicates the number of nodes on the site.
6.2. Simulation Scenarios

We compare the two models described in Section 4.2.

Central : All data is stored and processed at the cen-
tral site, where we assume has sufficient process-
ing power to handle all jobs. According to the
queuing theory, all the relevant queues of jobs at
the site should be stable.

Table 1. Parameters set for simulated Data Grid environments.

Model | Storage Performance # of Nodes Total 1/0
[PB] [MSI95] in the Site Bandwidth

Central | 2 0.5-1.8 10000 1 [TB/sec]
Tier0O(x1): 2 0.6/0.5/0.4 10000 1 [TB/sec]

Tier | Tierl(x4): 1 0.3/0.25/0.2 5000 | 500 [GB/sec]
Tier2(x16): 0.1 | 0.03/0.025/0.02 500 | 50 [GB/sec]

Table 2. Parameters for HEP jobs. The number of events for a job is 1G.

Job Comp. Size Frequency Input | Output
[GSI95*sec] [TB] [TB]
Large 1000 1/4 [months] | 1000 100
Medium 25 1/1 [month)] 100 10
Small 5 1/4 [hours] 10 0.1

Tier : When the server load increases, a copy of the
data is created at a lower-level tier and job pro-
cessing is delegated to that tier. In this model,
we use the 12 variations of scheduling and repli-

cation policies described in Section 5.

Table 1 shows the set of parameters for the experi-
mental simulation environment, which is similar in its
settings to the simulations performed in [9]. For the
Tier model, we assume three different settings: (Tier
0, Tier 1, Tier 2) = (0.6, 0.3, 0.03), (0.5, 0.25, 0.025),
(0.4, 0.2, 0.02) [MSI95(10°SpecINT95)]. The queuing
theory indicates that the Central model with 0.453318
[MSI95] becomes saturated and cannot process LHC
jobs. WAN bandwidth and local T/O bandwidth are set
to 10 [Gbps] and 100 [MB/sec], respectively, assuming
a viable technology level in 2007. Data access for every
job is highly localized because each job processes 10°
events independently. Using a local file view and file-
affinity scheduling, scalable local 1/O bandwidth can
be exploited to access large-scale data in a single sys-
tem image. Assuming each local I/O bandwidth is 100
MB/s, the data access bandwidth at each site can be
scaled up to the bandwidth listed in the ‘Total Disk
T/O’ column in Table 1.

We have analyzed jobs running different levels of
analysis in actual LHC experiments (Section 4.1) and
typified them into three concrete instances, as shown in
Table 2. In the LHC experiments, the amount of data
for RAW, ESD, AOD, and TAG is expected to increase
as shown in Table 3. The numbers in parentheses indi-
cate the number of ”original” data excluding replicas
across the environment.

We then conduct thousands of one-year simulations,
which start with Phase 3 and finish at the end of Phase
6, using the Presto IIT cluster (Dual Athlon MP 1900+,
768MB memory, 256 nodes) at the Tokyo Institute of
Technology. TInitially all data (1000TBx1, 100TBx2,
10TBx4) resides at Tier0 in all the scenarios. We as-
sume that each 1000TB RAW data takes shelter in a
different storage space, such as HPSS, and that the
storage space for the data does not increase during a
simulation.

Of the data access patterns characterized in [9], our
simulation assumes both random patterns (no correla-
tion) and temporal localization patterns (recently ac-
cessed files are likely to be accessed again). Other types
of locality, such as geographical locality and spatial lo-
cality, are not employed, as it 1s not obvious whether
other localities will be significant in LHC experiments.

6.3. Experimental Results

We compare the response time for the Central model
against that for the Tier model as shown in Figures 6,
7, 8, and 9. These are the results after ten repetitions
of the simulation for each combination of model and
scheduling/replication algorithms in the temporal lo-
cality or random access patterns. The total numbers
of jobs for Large, Medium, and Small were 30, 102, and
21693, respectively.

Figure 6 shows the response time for the Central
model. The performance of Tier 0 varies from 0.5 to
1.8 [MSI95]. The ’large’, 'medium’, and ’small’ corre-
spond to job class Large, Medium, and Small, while ’to-

Table 3. The average increase of RAW(1PB), ESD(100TB), AOD(10TB), and TAG(10GB).

Phase | Data (#)

Omth | 1PB(1)

4mth | 1PB(2), 100TB(1)

$mth | 1PB(3), 100TB(2), 10TB(4)

12mth | 1PB(4), 100TB(3), 10TB(8), 10GB(720)
16mth | 1PB(5), 100TB(4), 10TB(12), 10GB(1440)
20mth | 1PB(6), 100TB(5), 10TB(16), 10GB(2160)

10000

O large E medium O small

O total H estimate

1000 H

100 H

Rl

05 06 07 08 1 12 14 16 18
Performance of TO [M SI95]

Response Time [hours]

Figure 6. Central model response time. Tier0
performance varying from 0.5 to 1.8 [MSI95].

tal’ and ’estimate’ indicate the average response time
of all jobs and the estimated computation duration cal-
culated using the queuing theory. The x-axis indicates
the performance of a central site in MSI95 and the
y-axis indicates response time in log scale. Figure 6
shows that response time drastically increases as the
performance of the central site decreases.

Figures 7 and 8 show the average response times for
the Tier model with the 12 different combinations of
scheduling and replication policies. In this LHC sce-
nario, AODs generated by the Medium jobs are surely
accessed by lots of Small jobs that are frequently in
the proximal future. We specified the Scheduler and
Replica Manager to generate replicas of AODs during
the simulations. The performances of each tier are 0.6,
0.3, 0.03 or 0.5, 0.25, 0.025 [MSI95]. The x-axis shows
the three replication policies (DoNothing, LoadBound-
Replication, and Aggressive-Replication), data access
patterns, and both random and temporal localiza-
tion. DoNothing means that no background replica-
tion policies are used. 'Owner’, ’Greedy’, 'Load-Read’,
and 'Load-Write’ indicate the four scheduling poli-

@ Owner
I Greex
25 dy
O Load-Read
& O Load-Write
520
2
)
E
= 15
8
c
2
8 10
4
5 —‘ —‘ M
0 . . I . . .
DoNothing DoNothing L L i
(random) (locality) (random) (locality) (random) (locality)

Figure 7. Tier model response time with
various scheduling and replication policies
and temporal/random access pattern. (TierO,
Tierl, Tier2) = (0.6, 0.3, 0.03) [MSI95].

cies (OwnerComputes, Greedy, LoadBound-Read, and
LoadBound-Write, respectively).

For all cases, Greedy and LoadBound-Read show
lower performance than even the OwnerComputes algo-
rithm without file replication. That is because the over-
head of on-demand file replication of hundreds of ter-
abyte data before processing is too huge to overcome.
On the other hand, all the scheduling policies with two
of the replication policies, LoadBound-Replication and
Aggressive-Replication, exhibit drastic performance im-
provements in average response time compared to cases
without file replication (| i.e., in DoNothing).

Figure 9 compares response time in hours among
different settings of the Central and Tier models. 1.2
[MSI95] equals the performance of 10,000 of 2.8 GHz
Pentium 4 processors. Although response time with
the Central model improves with higher Tier 0 site
performance, the system quickly becomes unstable in
resource-starved situations. This is a cause for con-
cern, since there could be stringent limitations on the
resources that could be placed on one site.

a
3

@Owner

B Greedy
OLoad-Read
O Load-Writ

IS
&

N
S

@
&

@
S

o

Response Time [hours]
S a2 NN
o @ J

o

o

DoNothing ~ DoNothing ~ LoadBound L i i
(random) (locality) (random) (locality) (random) (locality)

Figure 8. Tier model response time with
various scheduling and replication policies
and temporal/random access pattern. (TierO,
Tierl, Tier2) = (0.5, 0.25, 0.025) [MSI95].

Given more resources, we could sustain system sta-
bility and achieve higher performance even when each
tier is smaller than the Central model. In particular,
we observe that even if Tier 0 is smaller than the sta-
bility threshold, we achieve stability and performance
comparable to that of a larger Tier 0 setting. In such
a case, employing a speculative class of scheduling and
replication policies proves to be effective (such as with
LoadBound-Replication). On the other hand, consider-
ing the aggregate performance of all sites that is shown
by the triangle points in Figure 9, there is plenty of
room for improvement in the performance.

7. Related Work

To study Grid framework components, scheduling
algorithms, and application performance, reproducible
and controlled evaluation is indispensable under var-
ious resource settings. This sort of evaluation, how-
ever, 1s too difficult and too costly to be obtained by
a physical Grid environment. Typically, there are two
approaches to achieve this goal.

The first approach is to emulate a Grid environ-
ment. The paper [11] describes a computational Grid
emulator called MicroGrid. It virtualizes resources and
emulates a virtual Grid environment, allowing various
performance settings against which real Grid middle-
ware, benchmark programs, and applications can be
evaluated. Unfortunately, there is no support for vir-
tualized storage resources at this time. If you have
Grid schedulers and real applications, it is possible to
evaluate different scheduling algorithms with various
environment settings, although the emulation cost is

Central w/ 0.453318[MSI95] saturates

Tier
15 \ Owner+
§ Replication
@ (Total)
E B
E10 e
2 Tier
§ Ownej+
8 5 Repligation & _Central
& 5t
—o
0 , X
02 04 06 08 1 12 14 16 18 2 22 24

Performance of Tier0 [MSI95]

Figure 9. Comparison of response time be-
tween Central model and Tier model with Own-
erComputes and LoadBound-Replication. In Cen-
tral, the minimum performance to maintain
stability is 0.453318 [MSI95] according to the
queuing theory.

prohibitive for very large numbers of large-scale appli-
cations in a worldwide Grid environment.

The second approach is to simulate a Grid envi-
ronment using a discrete event simulator. Although
there are several Grid simulation tools, we introduce
the MONARC simulation tool [2, 1] and ChicSim [10]
because both support the simulation of the storage
needed for data-intensive computing.

The MONARC simulation tool is an object-oriented
discrete event simulator written in Java. The tool em-
ploys a process-oriented approach for flexible simula-
tions and consists of threaded objects or “Active Ob-
jects”. The data model follows the Objectivity/DB
architecture, which is a basic object data design used
in HEP. The database server component simulates a
client-server mechanism used to access objects from a
database. However, to the best of the authors’ knowl-
edge, there have been no study thus far of schedul-
ing and file replication algorithms using this simulation
tool.

ChicSim (the Chicago Grid Simulator) is also a Grid
simulator targeted for the CERN LHC experiment in
the GriPhyN [5] project. Tt is built over Parsec [8], a
C-based parallel simulation language. The study [10]
on ChicSim showed the performance of various combi-
nations of External Schedulers and Dataset Schedulers
under simulative environments with smaller data sets.
Although such small-grain benchmarking is quite im-
portant, their simulation was not conducted with the
assumption of large application scalability. Our sim-

ulation attempts to simulate the scalability of actual
application scenarios involving thousands of jobs of re-
alistic sizes and their respective intervals.

8. Conclusions

We introduced several process scheduling algo-
rithms, file replication algorithms, and a replica elimi-
nation algorithm on a Data Grid, and discussed the ef-
fectiveness of different combinations of scheduling and
file replication algorithms under realistic Data Grid
scenarios using the Grid Datafarm architecture and the
Bricks Data Grid simulator. The results described in
the previous section under a realistic LHC job model
and a realistic worldwide multi-tier data Grid environ-
ment show the following.

e The average response time of the Central model
improves with higher Tier 0 site performance, but
the system quickly becomes unstable in resource-
starved situations.

e With background file replication al-
gorithms (LoadBound-Replication and Aggressive-
Replication), , all of the scheduling algorithms, es-
pecially the OwnerComputes algorithms, exhibit
drastic performance improvement in average re-
sponse time compared with scheduling without
background file replication.

e Even when a single site does not have enough
resources, the OwnerComputes scheduling algo-
rithm, combined with the LoadBound-Replication
background replication, helps to avoid resource-
starved situations.

Acknowledgments

This research was partially supported by the Min-
istry of Education, Culture, Sports, Science, and Tech-
nology (MEXT), Grant-in-Aid for Scientific Research
on Priority Areas, 13224034.

References

[1] MONARC Simulation Tool.
http://monarc.web.cern.ch/MONARC/simulation/.
[2] M. Aderholz and et al. Models of networked analysis
at regional centres for lhc experiments. Monarc phase
2 report, 2000.
Bricks. http://ninf.is.titech.ac.jp/bricks/.
Grid Datafarm. http://datafarm.apgrid.org/.
GriPhyN. http://www.griphyn.org/.

—r——
(SN
/e

[6]
[7]

[11]

[12]

[13]

[14]

[15]

HPSS: High Performance
http://www.sdsc.edu/hpss/.
M. Maheswaran, S. Ali, H. Siegel, D. Hensgen, and
R. Freund. Dynamic Mapping of a Class of Inde-
pendent Tasks onto Heterogeneous Computing Sys-
tems. Journal of Parallel and Distributed Computing,
59:107-131, 1999.

PARSEC.
http://pcl.cs.ucla.edu/projects/parsec/.

K. Ranganathan and I. Foster. Identifying Dynamic
Replication Strategies for a High Performance Data
Grid. In Grid Computing, 2001.

K. Ranganathan and 1. Foster. Decoupling Compu-
tation and Data Scheduling in Distributed Data In-
tensive Applications. In Proceedings of the 11th IEFE
International Symposium on High Performance Dis-
tributed Computing (HPDC-11), pages 352-358, 2002.
H. J. Song, X. Liu, D. Jakobsen, R. Bhagwan,
X. Zhang, K. Taura, and A. Chien. The MicroGrid: a
Scientific Tool for Modeling Computational Grids. In
Proceedings of SC2000, 2000.

A. Takefusa, H. Casanova, S. Matsuoka, and
F. Berman. A Study of Deadline Scheduling for Client-
Server Systems on the Computational Grid. In Proc.
of HPD(C-10, pages 406-415, 8 2001.

A. Takefusa, S. Matsuoka, H. Nakada, K. Aida, and
U. Nagashima. Overview of a Performance Evaluation
System for Global Computing Scheduling Algorithms.
In Proc. of HPDC-8, pages 97-104, August 1999.

O. Tatebe, Y. Morita, S. Matsuoka, N. Soda, and
S. Sekiguchi. Grid Datafarm Architecture for Petas-
cale Data Intensive Computing. In CCGrid2002, pages
102-110, 2002.

The Large
http://www.cern.ch/lhc/.

Storage System.

Hadron Collider.

