
Overview of a PerformanceEvaluation Systemfor Global Computing Scheduling
Algorithms

AtsukoTakefusa
OchanomizuUniversity
Tokyo112-8610,Japan

takefusa@hn.is.ocha.ac.jp

SatoshiMatsuoka
Tokyo Instituteof Technology/JST

Tokyo152-8552,Japan
matsu@is.titech.ac.jp

HidemotoNakada
ElectrotechnicalLaboratory

Ibaraki305-8568,Japan
nakada@etl.go.jp

KentoAida
Tokyo Instituteof Technology
Kanagawa226-8502,Japan

aida@noc.titech.ac.jp

UmpeiNagashima
NationalInstitutefor Advanced

InterdisciplinaryResearch
Ibaraki305-8562,Japan

umpei@nair.go.jp

Abstract

Whilethere havebeenseveralproposalsof high perfor-
manceglobal computingsystems,schedulingschemesfor
the systemshavenot beenwell investigated. The reason
is difficultiesof evaluationby large-scalebenchmarkswith
reproducibleresults. Our Bricks performanceevaluation
systemwould allow analysisand comparisonof various
schedulingschemeson a typical high-performanceglobal
computingsetting. Bricks can simulatevariousbehaviors
of global computingsystems,especiallythe behavior of
networksand resource schedulingalgorithms. Moreover,
Bricksis componentalizedsuchthatnotonlyits constituents
could be replacedto simulatevariousdifferent systemal-
gorithms,but also allows incorporationof existingglobal
computingcomponentsvia its foreign interface. To test
the validity of the latter characteristics,we incorporated
theNWSsystem,whichmonitorsandforecastsglobal com-
puting systemsbehavior. Experimentswere conductedby
running NWSunder a real environmentversusthe simu-
latedenvironmentgiventheobservedparametersof thereal
environment.We observedthat Bricksbehavedin thesame
manneras the real environment,and NWSalso behaved
similarly, makingquite comparativeforecastsunder both
environments.

1. Intr oduction

High performanceglobal computingsystemsfueledby
the rapid progressof high-speednetworksandcomputing
resourcesarenow regardedas the computingplatform of

the future[9]. In order to effectively employ computing
resourcestherein,mostproposedglobalcomputingsystems
embodya resourceschedulingframeworkwhosecompo-
nentsmonitor the global computingenvironmentandpre-
dict availabilityof theresources.Foreffectiveinvestigation
andobjectivecomparisonof schedulingalgorithmsandthe
implementationof the schedulingframeworks,large-scale
benchmarkswith reproducibleresultsundervariousenvi-
ronmentsparameterizedby thefollowing constituentsover
time arerequired:

� networks— topology, bandwidth,congestion,vari-
ance,and

� servers— architecture,performance,load and vari-
ance.

However, reproducibility over a wide-areanetwork is
extremelycostly to achieve,if not impossible. Thus,cur-
rently it is unrealisticto comparethe differentscheduling
algorithmsproposedby other researchers,let alonecom-
parethe systemsthemselves. Cost and scaleof possible
benchmarksarealsoextremelylimited. Theresultinglack
of impartialcomparativeapproachesis a greathindranceto
globalcomputingresearchanddeployment.

In orderto resolvethis situation,we arebuilding a per-
formanceevaluationsystemthatwould allow analysisand
comparisonof variousglobalcomputingsystemsunderre-
producible,controlledenvironments,calledBricks[1]. The
currentversionof Bricks mainly focuseson theevaluation
of different schedulingalgorithmsand schemesbasedon
a canonicalmodelof high-performanceglobal computing
systemwe proposedin [4, 5], simulatingthe behaviorsof

networksand resourceschedulingalgorithms. Moreover,
asBricks is constructedin acomponentalizedfashion,such
thatnot only its constituentscouldbe replacedto simulate
variousdifferentsystemalgorithms,but alsoallows incor-
porationof existing global computingcomponentsvia its
foreigninterface.

To test the validity of the latter characteristics,
we incorporatedthe NWS (Network Weather Service)
system[12,13], which physically monitors and forecasts
the behavior of global computing systemsin an actual
environment. Experimentswere conductedby running
NWSundera realenvironmentversustheBrickssimulated
environmentgiven theobservedparametersof the realen-
vironment,withoutessentialchangesto theNWSitself, and
weobservedthefollowing results:

� SimulatedBricks global computingenvironmentbe-
havedin thesamemannerastherealenvironment.

� Under both environments,NWS behavedsimilarly,
makingquitecomparativeforecasts.

2. Overview of the Bricks System

Bricksisaperformanceevaluationsystemfor scheduling
algorithms and frameworksof high performanceglobal
computingsystems.It is written in Java,andembodiesthe
following characteristics:

� Bricks consistsof the simulatedGlobal Computing
Environment and the Scheduling Unit (Figure 1),
allowingsimulationof variousbehaviorsof

– resourceschedulingalgorithms,

– programmingmodulesfor scheduling,

– networktopologyof clientsandserversin global
computingsystems,and

– processingschemesfor networksandservers.

Theconfigurationandparametersof theGlobalCom-
puting Environmentcanbe easilydescribedwith the
Bricksscript. Userscanconstructandalter thescript
in acomposibleway, usingthebuilding‘bricks’ within
thescript,to testandevaluatea varietyof simulations
in a reproduciblemanner1.

� To systematicallyobtain informationon global com-
puting resourcesfor resourceschedulingalgorithms,
Bricks embodiesa framework and constituentcom-
ponentswhich monitorsandpredictsthe resourcesin
the global computingenvironment. Bricks provides
severaldefaultcomponentsfor monitoring,predicting,

1As onemight expect,this is howthesimulatorhadbeennamedso.

Scheduler

Predictor

NetworkMonitor ServerMonitor

Client Network

Network

Server

Scheduling Unit

Global Computing Environment

(0a) (0b)

(0b)(0a)

(1) (6)

(2)

(7)

(3)

(8)

(9)(10)

(4)(5)

ResourceDB

Figure 1. The Bricks Architecture.

andschedulingthejobsin thesimulatednetwork.Be-
causethe componentsaredesignedto be orthogonal
with carefully-definedcomponentAPIs, they could
easilybe replacedby otherJava-writtencomponents;
for example,onecoulddescribea newschedulingal-
gorithm in Javaaccordingto the Bricks Scheduling
Unit SPI(ServiceProviderInterface),andtestit under
a variety of situationsusing Bricks. Moreover, the
componentscouldbeexternal,in particularrealglobal
computingschedulingcomponents.Brickscansupply
simulatedtime aswell asvariousmonitoredsimulated
information to the externalresource-relatedsystems,
andreceivethe resultsof schedulingdecisionsmade,
which is fed backinto the simulation. Although it is
still tooearlytoclaimthatBrickscouldeasilyintegrate
everypossibleglobalcomputingcomponents,wehave
beensuccessfulin integratingtheNWSsystem,which
had beendevelopedearlier at UCSD, by defining a
JavaAPI for theNWS.

Underneath,Bricksemploysaqueuingnetworkmodelin
whichserversandnetworksaremodeledasqueuingsystems
in the Global ComputingEnvironment. In Figure 2, the
networkfrom theclient to theserver, thenetworkfrom the
serverto theclient,andtheserverarerepresentedbyqueues,�����

,
�����

and
���

, respectively. Servicerateson
�����

,
�����

and
� �

indicate the bandwidthof eachof the networks,
the processingpower of the server, respectively(A and
A’ denotethe sameclient, but distinguishedfor notational
convenience).Detailsof themodelcouldbefoundin [4, 5].

3. The Bricks Ar chitecture

We now give more detailed descriptionsof Bricks.
In Bricks, the Global Computing Environmentand the
SchedulingUnit coordinateto simulate the behavior of

2

Client A
Server A

Server B

Server C

Client B

Client C

Client B’

Client C’

Client A’
Qns1

µµnsλλ ns

Site1

Site2 Site2’

Site1’

Other Data Other Data
Other Tasks

µµsλλ s
µµnrλλ nr

Qnr1

Qs1

Qns2

Qns3

Qns4

Qnr2

Qnr3

Qnr4

Qs2

Qs3

Figure 2. An example of the Global Computing
Environment Model.

global computing systems. Overall, Bricks operatesas
a discreteeventsimulatorof a queuingsystemin virtual
time. An overviewof thestepsof theBricks simulationis
illustratedin Figure1.

3.1. The Global Computing Envir onment Simula-
tion Part

The Global Computing Environment representsthe
global computingsimulationenvironment,andconsistsof
thefollowing modules:

Client: representsthe usermachine,upon which global
computingtasksareinitiatedby theuserprogram.

Network: representsthe (wide-area)network intercon-
nectingtheClient andServer, andis parameterizedby
e.g., bandwidth,congestion,and their varianceover
time.

Server: denotesthecomputationalresourcesof thegiven
globalcomputingsystem,andis parameterizedby e.g.,
performance,load,andtheir varianceovertime.

BothNetworkandServeraremodeledasqueues,whose
processingschemescan be replaced. The model of a
taskinvokedby a client machine(Client), communication
modelsof Network andservermodelsof Serveraregiven
next.

3.1.1.TaskModel

It is important for the simulator to manageand discover
thetime durationof communicationandcomputationfor a
giventask. In thecurrentBricks implementation,a taskis
representedby:

� the amountof datatransmittedto/from a serverwith
thetaskasaninput/outputof thecomputationand

� thenumberof executedinstructions(operations)in the
task.

3.1.2.Communication Models

With Bricks, onecanflexibly simulatevariouscommuni-
cationmodelsof thenetworkwith simplespecificationsof
the Bricks script. Currently, there are two major model
familiessupportedby Bricks: Thefirst family assumesthat
thecongestionof a networkis representedby adjustingthe
amountof arrival datafrom extraneoustraffic generatedby
othernodesin thesystem(Figure2)[4, 5]. Here,oneneeds
tospecifyidealbandwidth,theaverageof actualbandwidth,
the averagesizeof extraneousdatafrom othernodes,and
their variance. Specifying smaller packetswill result in
greateraccuracyat theexpenseof largersimulationcost.

In thesecondfamily, thevariationof theNetworkband-
width at each time-step is determinedby the observed
parametersof the real networkingenvironment.Although
one needsto accumulatethe measurementsprior to the
simulation,theNetworkbehavesasif it wererealnetwork.
Furthermore,the cost of simulationis much smallerthan
thatof the first. Becausethe actualmeasurementsaredis-
crete,we specifyan interpolationmethod,including linear
or curvefitting methods.

The two families alreadyserveto generatea rich set
of modelsfor networkbehaviorof global computingsys-
tems,due to the variousparametersthat can be specified
(suchasvariousprobablisticfunctionsof the arrival rate).
Furthermore,weareworkingto extendBricksto accommo-
datemorefamilies,for increasedaccuracy, betterexecution
speed,userconvenience,etc.

3.1.3.ServerModels

The current Bricks modelsthe computingserversin the
following way. A servermachineprocessestasksin aFCFS
manner, andis modeledasa queueasis with thenetworks.
Its load can be specifiedand simulatednot only by the
arrival rateof tasksfrom otherusers(i.e.,extraneoustasks),
but alsocould be specifiedby the observedparametersof
therealenvironment.

3.2.SchedulingUnit

The other major portion of Bricks is the Scheduling
Unit that models a canonicalschedulingframework for
globalcomputingsystems.Theconstituentmodulesof the
SchedulingUnit representcommonfeaturesfoundin global
computingsystemsasfollows:

3

NetworkMonitor: measuresnetwork bandwidthand la-
tency in global computingenvironments. The mea-
suredvaluesarestoredinto theResourceDBmodule.

ServerMonitor: measuresperformance,load, andavail-
ability of servermachines.The measuredvaluesare
alsostoredinto ResourceDB.

ResourceDB: servesas a scheduling-specificdatabase,
storing the values of various measurements. The
measuredvaluesareaccessedby thePredictorandthe
Schedulerin order to makeforecastsandscheduling
decisions.

Predictor: readsthe measuredresourceinformation of
certaintime durationfrom the ResourceDB,andpre-
dicts the availability of resources. The predicted
informationis typically usedfor schedulingof a new
globalcomputingtask.

Scheduler: allocatesa new task invoked by a client on
a suitableservermachine(s),makingschedulingdeci-
sionsbasedontheresourceinformationprovidedfrom
ResourceDBandPredictor.

As is with theGlobalComputingEnvironment,thecom-
ponentsof the SchedulingUnit arewritten in Java,which
facilitatesAPIs calledSPIs. The SPIsallow replacement
of thecomponentswith alternative,user-suppliedmodules.
For exampleit would be possibleto replacethe Sched-
ulerto accommodatenewschedulingalgorithms,or replace
thePredictorto incorporateexternalpredictorssuchasthe
NWS.

4. Incorporating Existing Global Computing
Components

As mentionedabove, Bricks allows incorporationof
externalcomponentsincluding existing global computing
componentsallowing their validation and benchmarking
undersimulatedand reproducibleenvironments. This is
mainlyachievedbyreplacingthemodulesof theScheduling
Unit, andexploitingtheforeignmoduleSPIsto passonand
receivevarious information on scheduling,suchas those
measuredby themonitors,etc.

4.1.Overview of the SchedulingUnit SPI

Eachcomponentof the SchedulingUnit is replaceable
by any Java-writtencomponentimplementingthe SPIsin
Figure3. NetworkInfo representsinformationof Network
statussuch as bandwidth, latency, etc. and ServerInfo
representsServerinformation suchas load average,CPU
utilization, etc. Initialization routines for user defined

interface ResourceDB {
// stores networkInfo
void putNetworkInfo(

NetworkInfo networkInfo
);
// stores serverInfo
void putServerInfo(

ServerInfo serverInfo
);
// provides NetworkInfo between
// sourceNode and destinationNode
NetworkInfo getNetworkInfo(

Node sourceNode,
Node destinationNode

);
// provides ServerInfo of serverNode
ServerInfo getServerInfo(

ServerNode serverNode
);
// implements process when a simulation
// finishes
void finish();

}

interface NetworkPredictor {
// returns Prediction of the Network
// between sourceNode and destinationNode
NetworkInfo getNetworkInfo(

double currentTime,
Node sourceNode,
Node destinationNode,
NetworkInfo networkInfo

);
}

interface ServerPredictor {
// returns Prediction of serverNode
ServerInfo getServerInfo(

double currentTime,
ServerNode serverNode,
ServerInfo serverInfo

);
}

interface Scheduler {
// returns serverNodes for the request
ServerAggregate selectServers(

double currentTime,
ClientNode clientNode,
RequestedData data

);
}

Figure 3. Overview of the Scheduling Unit SPI.

4

Bricks Global Computing Environment Part

NWSResource
DB

NWSNetwork
Predictor

NWSServer
Predictor

Monitor Scheduler

NWS
Persistent
State

NWS Forecaster NWS
Sensor

NWS Adapter

Bricks Scheduling Unit SPI

NWS API

Figure 4. The Interrelationship between the Bricks
SPI and the NWS API.

componentsare automaticallyinvoked by the Bricks via
JavareflectiveAPI.

The Interrelationshipbetweenthe Bricks SPI and the
NWSAPI is shownin Figure4.

4.2.Incorporating the NWS system

Althoughwe arestill at anexperimentalstage,asa first
stepwehavechosento incorporatetheNWSsystem,which
monitorsand forecaststhe behaviorof global computing
systemsbasedon pastobservations.NWS wasdeveloped
atUCSDprior to Bricks,sotherewerenospecialprovisions
to run NWS underasimulatedenvironment.

Although therehavebeenseveralworks in integrating
NWS into existingglobalcomputingsystemsby theuseof
itsC-basedAPI, suchasAppLeS[6],Legion[10],Globus[8],
andour Ninf system[11],all thesystemsexecutedundera
real environment,and as suchNWS requiredlittle or no
changedespitethat partsof its moduleshadbeenwritten
with assumptionsaboutits underlyingexecutionenviron-
ment.Thisisbecausethesystemswereorthogonalto NWS,
andassumedanidenticalor similarexecutionenvironment.

For incorporationof NWS into Bricks, the situationis
somewhatdifferent. In this case,NWS must be made
to work in simulatedvirtual time, and that the observed
measurementswill befed from Bricks.

In order to incorporateNWS, we developedthe NWS
JavaAPI[2], which largely offers the samefeatureas the
C-basedNWS API. Most of the work in incorporation
hadbeendoneusingthe JavaAPI, removingsomeof the
underlying dependencieswhen necessary, so that NWS
couldbemanagedto work undervirtual time.

NWSconsistsof thefollowing modules:

PersistentState: is storagefor measurements.It is similar

NWS Forecaster

Scheduler

Predictor

NetworkMonitor ServerMonitor

Scheduling Unit

Global Computing Environment

NWS

Simulator

NWSResourceDB

NWS Java API

NWSAdapter

NWS
Persistent State

	
 � �
 	 � � � � �� � �
 	 � � � � � �
 � � 	 � �� � �
 	 � � � � � � � �� � � � � � �
 � � � � � � � �� � � � � � � � � � � � � � � 	 � ��

	
 � � � � � � � � �� � �
 	 � � � � � �
 � � 	 � �� � �
 	 � � � � � � � ��

	
 � �
 	 � � � � �� � �
 	 � � � � � �
 � � 	 � �� � �
 	 � � � � � � ! � � � �� � �
 	 � � � � �
 	 � �
 � 	 ! � � � �� � � � � � �
 � � � � � � � �� � � � � � � � � � � � � � � 	 � ��

	
 � � � � � � � � �� � �
 	 � � � � � �
 � � 	 � �� � �
 	 � � � � � � ! � � � �� � �
 	 � � � � �
 	 � �
 � 	 ! � � � ��

NWSNetworkPredictor

NWSServerPredictor

Figure 5. Incorporating the NWS modules into
Bricks.

to theBricks ResourceDB.

NameServer: managesthecorrespondencebetweentheIP
addressandthedomainaddressfor eachindependently-
runningmodulesof NWS.

Sensor: monitors the statesof networksand serverma-
chinesin global computingsystems. Sensorworks
in a similar mannerto the NetworkMonitor and the
ServerMonitorin Bricks.

Forecaster: predictsavailability of the resources.Again,
this is similar in behaviorto thePredictorin Bricks.

We substitutedthe defaultBricks ResourceDBandthe
Predictorwith theNWS PersistentStateandtheForecaster
in Bricks, respectively. The Monitorsstoretheir measure-
mentsinto thePersistentState, andtheSchedulerallocates
a task using resourceavailability predictedby the Fore-
caster. TheNWSResourceDB,theNWSNetworkPredictor
and the NWSServerPredictorimplementthe SPIs; finally
theNWSAdapter, whichconvertsthedataformatsbetween
Bricks andthe NWS JavaAPI, mainly servesto interface
NWS andBricks.

Figure 4, 5 illustrates the incorporationof the NWS
modulesinto Bricks. Measurementsmadeby the Net-
workMonitor and the ServerMonitor are handedoff to
the NWSResourceDBwith requestfor storing the mea-
surements;The NWSResourceDBin turn convertsand
storesthe measurementsinto the PersistentStatevia the
NWSAdapterandtheJavaAPI. TheNWSNetworkPredic-
tor andtheNWSServerPredictoralsoretrievethepredicted
valuesfrom theForecastervia theadapterandtheAPI in a
similar manner.

5

Parameter Value

theintervalof servermonitoring 10[sec]
theintervalof networkmonitoring 60[sec]
probeddatasize 300[kbytes]

Table 1. The parameters of the Sensors.

0

200

400

600

800

1000

1200

0h 6h 12h 18h 24h

T
hr

ou
gh

pu
t [

kb
yt

es
/s

ec
]

Elapsed Time

Measurement

0

200

400

600

800

1000

1200

0h 6h 12h 18h 24h

T
hr

ou
gh

pu
t [

kb
yt

es
/s

ec
]

Elapsed Time

Simulation

Figure 6. One day’s worth of bandwidth measured
between TITECH and ETL under the real environ-
ment in the figure above versus Bricks in the figure
below.

5. Bricks Experiments

Wenow describetheexperimentsconductedby running
NWS under a real environmentversusthe Bricks sim-
ulatedGlobal ComputingEnvironment. The experiments
showthatNWSbehavedsimilarlyunderbothenvironments,
servingasstrongsupportiveevidencethat Bricks canpro-
vide a simulationenvironmentfor global computingwith
reproducibleresults.

5.1.Experiment Procedure

Theoverallexperimentprocedureis asfollows. Initially,
wesetuptheNWSmodulesin arealwide-areaenvironment
to measurereal-lifeparameterssuchasnetworkbandwidth.
Then,we havetheNWS Forecasterpredicttheparameters.
At the sametime, we drive Bricks under the observed
measurements,andhavethe Forecastermakea prediction
underthesimulatedenvironment.Finally we comparethe
resultsof predictionsfor therealenvironmentversusBricks.

First, we preparethe NWS Sensors on two different

0

200

400

600

800

1000

1200

16h 17h 18h

T
hr

ou
gh

pu
t [

kb
yt

es
/s

ec
]

Elapsed Time

Measurement
Simulation - spline

Figure 7. The comparison of bandwidth measured
under the real environment versus Bricks for two
hours.

nodeslocatedat different sites, namely, Tokyo Institute
of technology(TITECH) andElectrotechnicalLaboratory
(ETL) in Tsukuba,situatedabout80kmsaway. TheSensors
measurethe network bandwidthand latencybetweenthe
nodes,andCPUavailability on each.TheNWS Forecaster
predictsthe availability of resourcesfor eachtime-stepof
the measurements.Table 1 showsthe parametersof the
Sensors.

Next, we definea Bricks simulationunderthe second
family of modelsmentionedearlier, employingtheobserved
parametersof the real environmentmeasuredby Sensors,
with cubic splineparameterinterpolation,chosenbecause
theinterpolatedvalueonly dependson thelocal past(three
time-steps).We incorporatethe NWS PersistentStateand
Forecasterinto Bricks andsettheparametersidenticallyas
shownin Table1.

5.2.Experimental Results

Figure6 showsoneday’s worth of bandwidthmeasured
betweenTITECH andETL underthe real environmenton
Feb. 1, 1999, versusthat simulatedwith Bricks. The
horizontalaxisindicatesrealelapsedtimeor virtual elapsed
timein theBrickssimulationin hours,while theverticalaxis
indicatesthebandwidthin kbytespersecond.Thesegraphs
showthebandwidthmeasuredunderBricks is quitesimilar
to thatfor therealenvironment.Figure7 magnifiesthetime
axis to two hoursfor direct comparisonof the real versus
simulatedenvironments. Here, we can confirm that the
bandwidthmeasuredundertherealenvironmentandBricks
coincidequite well. Although therehavebeenproposals
of communicationmodels for TCP/IP transmissionsand
simulationsusingthemodel,suchmodelshavebeenlimited

6

0

200

400

600

800

1000

1200

0h 6h 12h 18h 24h

T
hr

ou
gh

pu
t [

kb
yt

es
/s

ec
]

Elapsed Time

Measurement

0

200

400

600

800

1000

1200

0h 6h 12h 18h 24h

T
hr

ou
gh

pu
t [

kb
yt

es
/s

ec
]

Elapsed Time

Simulation

Figure 8. One day’s worth of bandwidth predicted
by the NWS Forecaster under the real environment
in the graph above versus Bricks in the graph
below.

to describingthebehaviorof particularpacketstypes,such
asWWW,FTPorTelnet,duetotheircomplexity. Brickscan
adoptsuchmodels,aswell asreal-worldmeasurementsin
caseswhereanalyticalmodelingof networkcharacteristics
is difficult.

Figure8 showsoneday’s worth of bandwidthpredicted
by theNWS Forecasterunderthe real environmentversus
Bricks. Figure9 magnifiesthe graphandshowsthe com-
parisonof the predictionfor two hours. Here, we again
confirm that both predictionsare very similar, servingas
supportingevidencethattheNWSForecasterfunctionsand
behavesnormallyundertheBrickssimulation2.

6. RelatedWork

While therehavebeenabundantresearchon scheduling
algorithms,many of them havenot beenimplementedor
well investigated.In fact therehavebeenvery little study
of applicationof resourceschedulingalgorithmsfor global
computing. The primary reasonis that, for realisticenvi-
ronments,conductingcontrolledexperimentsfor objective
comparisonsagainstother proposedalgorithmsand their

2To be moreprecise,we did experiencea small discrepancybetween
Bricksandtherealmeasurements.Currently, weareconjecturingthatthis
is dueto missingmeasurementsdueto lostpacketsin therealenvironment
(i.e., for Bricks-drivensimulation,NetworkMonitor is alwayssuccessful
atmakingameasurement,whereasin therealenvironmentameasurement
might not be madedue to packetbeing lost in the network). Whenwe
compensatedfor the droppedpackets,the measurementsmatchedquite
well. Wearestill conductingresearchto investigatethis phenomenon.

0

200

400

600

800

1000

1200

16h 17h 18h

T
hr

ou
gh

pu
t [

kb
yt

es
/s

ec
]

Elapsed Time

Measurement
Simulation - spline

Figure 9. The comparison of the behavior of the
NWS Forecaster under the real environment ver-
sus Bricks for two hours.

implementationsis quite difficult. The approachwe have
takenin Bricks is to simulatea global computingenviron-
ment,andallow integrationof variousalgorithmsaswell
as modulesfrom real global computingsystems. In this
regard,therearea coupleof projectsthat are following a
similar approach.

Osculant[3]from University of Florida is a bottom-up
taskschedulerfor heterogeneouscomputingenvironment.
Toevaluatetheirschedulingalgorithms,thereisanOsculant
Simulatorwhichcanalsorepresentvariousnetworktopolo-
giesandnodeconfigurations.ComparedtoBricks,Osculant
Simulatorwasnot designedto bea performanceevaluation
environmentthatcanintegratevariouscomponents.

WARMstonesbeing proposedby the Legion group at
Universityof Virginia is conceptuallysimilar to Bricks,al-
thoughit seemsto nothavebeenimplementedyet. WARM-
stonesisbasedontheMESSIAHS[7]system,whichconsists
of the systemdescriptionvector to representthe capabili-
tiesof a servermachine,the taskdescriptionvectorwhich
denotestherequirementfor thetask,andMIL (MESSIAHS
Interface Language)and Libraries to representdifferent
schedulingalgorithmsin an easyandflexible manner. In-
stead,we chooseto provideanobject-orientedframework,
namely the SchedulingUnit SPI as Java interfacesfor
implementingvarious schedulingalgorithms, as well as
foreigncomponents.Althoughthereareseveralambitious
technicalaspectsof WARMstones,it remainsto be seen
whetherWARMstones,whenimplemented,will offer easy
extensibilityor allow integrationof modulesfrom existing
globalcomputingsystems.

7

7. Conclusionsand Future Work

We proposedthe Bricks performanceevaluationsys-
tem that allows objective and reproducibleevaluationof
high-performanceglobal computingsystemswith queuing
theory-basedsimulation, especiallythe behavior of net-
work andresourceschedulingalgorithms.Theusersof the
Bricks systemcanspecifynetwork topologies,serverma-
chinearchitectures,communicationmodelsandscheduling
frameworkcomponentsusing the Bricks script, allowing
easyconstructionof a particularglobal computingsystem
configuration. Moreover, Bricks is componentalizedsuch
thatnot only its constituentscouldbe replacedto simulate
variousdifferentsystemalgorithms,but alsoallows incor-
porationof existing global computingcomponentsvia its
foreigninterface.Experimentsconductedwith NWS serve
as a supportiveevidencethat Bricks is effective in this
regard.

As a future work, we plan to extendBricks in several
ways.First,thecurrentrepresentationsof task,communica-
tion andservermodelsneedto becomemoresophisticated,
requiring extensionsto representwider class of global
computingsystemconfigurations. Task modelshave to
beextendedto allow representationof parallelapplication
tasks,and servermodelsshould representvarious server
machinearchitectures,suchasSMPsandMPPs,aswell as
schedulingschemesof realisticmachine-specificresource
schedulerssuch as LSF (Load SharingFacility). More-
over, aggregateconstraintson resourcescheduling,suchas
co-schedulingrequirements,shouldberepresentable.As a
systemconfigurationlanguage,we plan to substituteXML
with the Bricks script for wider usage. Finally, we plan
to investigatesuitableschedulingalgorithmsthemselvesfor
global computingsystems,in particularour Ninf system,
usingBricks. We plan on runningBricks on a dedicated
parallelNT clusterof 33nodestoconductvariousparameter
studies.

Acknowledgments

We would like to thank Rich Wolski at UTK and Jim
HayesatUCSDof theNWSteamfor theirpreciousadvice.
We also thankthe contributionsof the Ninf projectmem-
bers,in particular, SatoshiSekiguchi,HiromitsuTakagiand
OsamuTatebeat ETL, MitsuhisaSatoat RWCP, Hirotaka
OgawaatTITECH andHaruoHosoyaat OchanomizuUni-
versity. This researchis beingconductedwith grantsfrom
the JST PRESTOprogramand the SoftwareEngineering
Foundation.

References

[1] Bricks.

http://ninf.is.titech.ac.jp/bricks/ .
[2] NWS Java API.

http://ninf.etl.go.jp/˜nakada/nwsjava/ .
[3] Osculant.

http://beta.ee.ufl.edu/Projects/Osculant/ .
[4] K. Aida, A. Takefusa,H. Nakada,S.Matsuoka,andU. Na-

gashima.Performanceevaluationmodelfor job scheduling
in a global computing system. In Proc. 7 "$# IEEE In-
ternational Symposiumon High PerformanceDistributed
Computing, pages352–353,1998.

[5] K. Aida,A. Takefusa,H. Nakada,S.Matsuoka,S.Sekiguchi,
and U. Nagashima. Performanceevaluation model for
schedulingin a global computing system. International
Journalof High-PerformanceComputing(submitted).

[6] F. Berman,R. Wolski, S. Figueira,J. Schopf,andG. Shao.
Application-levelschedulingon distributedheterogeneous
networks. In Proc. the 1996 ACM/IEEE Supercomputing
Conference, 1996.

[7] S. J. ChapinandE. H. Spafford.Supportfor implementing
schedulingalgorithmsusingmessiahs.ScientificProgram-
ming, 3:325–340,1994.

[8] I. FosterandC. Kesselman.Globus: A metacomputingin-
frastructuretoolkit. InternationalJournalof Supercomputer
Applications, 1997.

[9] I. FosterandC.Kesselman,editors.TheGrid: Blueprintfor
a NewComputingInfrastructure. MorganKaufmann,1998.

[10] A. Grimshaw, W. A. Wulf, andtheLegionteam.Thelegion
vision of a worldwide virtual computer. Comm. ACM,
40(1):39–45,1997.

[11] M. Sato, H. Nakada,S. Sekiguchi,S. Matsuoka,U. Na-
gashima,andH. Takagi.Ninf: A networkbasedinformation
library for a globalworld-widecomputinginfrastracture.In
Proc.HPCN’97(LNCS-1225), pages491–502,1997.

[12] R. Wolski, N. Spring, and C. Peterson. Implementinga
performanceforecastingsystemfor metacomputing:The
network weatherservice. In Proc. the 1997 ACM/IEEE
SupercomputingConference, 1997.

[13] R. Wolski, N. T. Spring,andJ.Hayes.Thenetworkweather
service: A distributed resourceperformanceforecasting
service for metacomputing. TechnicalReport TR-CS98-
599,UCSD,1998.

8

