
Bricks: A Performance Evaluation
System for Scheduling Algorithms on

the Grids

Atsuko Takefusa
Tokyo Institute of Technology

Japan Society for the Promotion of Science

http://ninf.is.titech.ac.jp/bricks/

Scheduling Studies on the Grids

? Application Level Scheduling
? APST, AMWAT (AppLeS)
? MW (Condor)
? Prophet, stochastic scheduling, performance

surface, …

? Job Scheduling
? Match-making (Condor)
? Scheduler for network enabled servers (Ninf,

NetSolve)
? Computational economy (Nimrod, G-Commerce)

Evaluation of the Scheduling
Algorithms

? Unrealistic to compare scheduling algorithms
w/physical benchmarks
Reproducible large scale benchmarks are too difficult

under various
? Networks - topology, bandwidth, congestion,

variance
? Servers - architecture, performance, load, variance

? Validity of scheduling framework modules
have not been well-investigated.
? Benchmarking cost of monitor / predictor under

real environment HIGH

A Performance Evaluation System:
Bricks

? Performance evaluation system for
? Scheduling algorithms
? Scheduling framework components

(e.g., sensors, predictors)

? Bricks provides
? Reproducible and controlled evaluation

environments
? Flexible setups of simulation environments
? Evaluation environment for external Grid

components (e.g., NWS forecaster)

The Bricks Architecture

Grid Computing EnvironmentGrid Computing Environment

Client

Client

Client

Client

Network
Network Server

Server

Server

Server

Network
Network

Network
Network

Scheduler

NetworkMonitor ServerMonitor

Scheduling UnitScheduling Unit

ResourceDB

NetworkPredictor
ServerPredictor

Predictor

Scheduler

Predictor

NetworkMonitorServerMonitor

Client
Network

Network
Server

ResourceDB

Grid Computing Environment
? Client

? Represents user of the Grid system
? Invokes Grid computing Jobs

Amount of data transmitted to/from server,
of executed instructions

? Server
? Represents computational resources

? Network
? Represents the network interconnecting

the Client and the Server

Represented using queues

Communication/Server Models
using queues in Bricks

? Extraneous data/job model
Congestion represented by adjusting the amount of
arrival data/jobs from other nodes/users

? Trace model
Bandwidth/performance at each step = trace data
such as observed parameters of real environment.

Need to specify only several parameters
Greater accuracy requires larger simulation cost

Network/Server behaves as if real network/server
Simulation cost lower than the previous model
Need to accumulate the measurements

A Hierarchical Network
Topology on Bricks

Client

ServerClient

Server

Client

Server

Client

Server

Client

Client
Server

Client

Server

Client

Server

Client

Server

Client

Server

Server

Client

WAN

LAN

Local Domain

Network
Network

trace

Scheduler

Predictor

NetworkMonitorServerMonitor

Client
Network

Network
Server

ResourceDB

Scheduling Unit
? Network/ServerMonitor

Measures/monitors network/server status on the Grid
? ResourceDB

Serves as scheduling-specific database, storing the
values of various measurements.

? Predictor
Reads the measured resource information from
ResourceDB, and predicts availability of resources.

? Scheduler
Allocates a new task invoked by a client
on suitable server machine(s)

Overview of Grid Computing
Simulation with Bricks

Scheduler

NetworkMonitor ServerMonitor

Client
Network

Network
Server

Scheduling UnitScheduling Unit

Grid Computing EnvironmentGrid Computing Environment

ResourceDB

Monitor periodically

Store observed information
Inquire

suitable server

Query available servers

Query predictions

Execute task
Return results

NetworkPredictor

Invoke
task

ServerPredictor

Return
scheduling info

Predictor

Send the task

Predictions Perform Predictions

Incorporating External
Components

? Scheduling Unit module replacement
? Replaceable with other Java scheduling

components
? Components could be external - in particular,

real Grid scheduling components
? Allowing their validation and benchmarking

under simulated and reproducible
environments

? Bricks provides the Scheduling Unit SPI.

Scheduling Unit SPI
interface ResourceDB {

void putNetworkInfo();
void putServerInfo();
NetworkInfo getNetworkInfo();
ServerInfo getServerInfo();

}
interface NetworkPredictor {

NetworkInfo getNetworkInfo();
}
interface ServerPredictor {

ServerPredictor getServerInfo();
}
interface Scheduler {

ServerAggregate selectServers();
}

interface ResourceDB {
void putNetworkInfo();
void putServerInfo();
NetworkInfo getNetworkInfo();
ServerInfo getServerInfo();

}
interface NetworkPredictor {

NetworkInfo getNetworkInfo();
}
interface ServerPredictor {

ServerPredictor getServerInfo();
}
interface Scheduler {

ServerAggregate selectServers();
} Bricks Grid Computing Environment

NWSResource
DB

NWSNetwork
Predictor

NWSServer
Predictor

Monitor Scheduler

NWS
Persistent
State

NWS Forecaster

NWS Adapter

Bricks Scheduling Unit SPI

Real / Original grid computing
scheduling components are available!

NWS API

Performance of a Deadline
Scheduling Scheme

? Traditional scheduling ? deadline scheduling
? Charging mechanisms will be adopted.

? The Grids consists of various resources.
? The resources are shared by various users.

? Grid Users want the lowest cost machines which
process jobs in a fixed period of time

? Deadline scheduling
? meets a deadline for returning the results of jobs

A Deadline Scheduling Algorithm
1. Compute available processing time

Telapsed = Tdeadline - Tstart

2. Compute target processing time
Ttarget = Telapsed x Opt (0 < Opt ? 1.0)

3. Estimate processing time on each server
Tsi = Wsend/Psend + Wrecv/Precv + Ws/Pserv (0 ? i < n)
Wsend, Wrecv, Ws: send/recv data size, and # of instructions
Psend, Precv, Pserv: estimated send/recv network throughput, and

server performance

4. Select suitable server i
Conditions: Diff = Ttarget – Tsi ? 0 && Min(Diff)

If Diff < 0 (? i) then Min(|Diff|)

Evaluation of The Deadline
Scheduling Algorithms
? Scheduling algorithms

? Deadline: Opt = 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
? LOTH: select server i such as Min(Tsi)

? Environment
? Grid Computing Environment

? # of local domain: 10, # of local domain nodes: 5-10
? Ave. LAN bandwidth: 50-100[Mbits/s]
? Ave. WAN bandwidth: 500-1000[Mbits/s]
? Ave. server performance: 100-500[Mops/s]
? Ave. server Load: 0.1
? Job processing manner on servers: FCFS

? Characteristics of client jobs
? Send/recv data size: 100-5000[Mbits]
? # of instructions: 1.5-1080[Gops]
? Ave. interval of invoking: 60(high load), 90(lower load) [sec]

Simulation Environment

The Prospero cluster:
66PE cluster at
Matsuoka Lab., Tokyo
Institute of Technology.
? Dual Pentium III

800MHz
? Memory: 640MB
? Network: 100Base/TX

Experimental Results:
differences (DL=Tdeadline – Tend)

Interval = 60 (High load) Interval = 90 (Lower load)

Opt = 0.5

Opt = 1.0

success

fail

Experimental Results

? For smaller Opt, fail
rates become
smaller while costs
become higher.

? Estimation of
prediction error is
important.

? Cost of LOTH is
highest.

? Remarkable delay
because of FCFS on
servers 405.77.433-13.0134.9329.67LOTH

256.317.578-40.1422.8249.261.0

273.416.071-47.1924.6847.820.9

287.514.263-34.7826.0143.650.8

317.311.551-26.5428.5638.830.7

338.87.935-21.6030.3734.770.6

382.36.730-20.9833.9230.830.5

CostFail
[%]

#of
Fail

DL-
[min]

DL+
[min]

Ave
[min]Opt

Interval = 90(Lower load), # of jobs = 445

NOT suitable

Sharing scheduling info.
and fallback mechanisms
are important.

Related Work: Performance
Evaluation Environments

? Coarse-grained simulator
? Bricks
? Simgrid [UCSD]

? Emulator
? MicroGrid [UCSD]

? Actual testbed
? APGrid, Grid (US), eGrid, etc.

Accuracy of the experiments
Usability, Scalability, Reproducibility,
ease to control, long-term experiments

Conclusions
? The Bricks performance evaluation system for

Grid scheduling
? multiple simulated reproducible benchmarking

environments for
? Scheduling algorithms
? External Grid components

? Experiments of a Deadline scheduling scheme
? The Accuracy of prediction affects deadline

scheduling performance
? LOTH is not suitable under charging mechanisms.
? To avoid remarkable delay, sharing scheduling history

and fallback mechanisms are important.

Future Work
? Simulation model

? Server model for various architectures (e.g., SMP，
MPP) and local scheduling schemes (e.g., LSF)

? representation of parallel application tasks
(Parameter-sweep applications are available)

? System Issues
? Reconsideration of the Scheduling Unit design,

interfaces, and data formats (c.f. Global Grid Forum)
? Providing benchmarking sets of Bricks simulations

? Evaluation
? Investigation of various job/task scheduling

schemes on Bricks (e.g. computational economy)
? Performance evaluation under real environment

