Bricks: A Performance Evaluation
System for Scheduling Algorithms on
the Grids

Atsuko Takefusa
Tokyo Institute of Technology
Japan Society for the Promotion of Science

http://ninf.is.titech.ac.jp/bricks/

Scheduling Studies on the Grids

= Application Level Scheduling
- APST, AMWAT (AppLeS)
- MW (Condor)

- Prophet, stochastic scheduling, performance
surface, ...

~ Job Scheduling

-~ Match-making (Condor)

-~ Scheduler for network enabled servers (Ninf,
NetSolve)

-~ Computational economy (Nimrod, G-Commerce)

Evaluation of the Scheduling
Algorithms

= Unrealistic to compare scheduling algorithms
w/physical benchmarks

Reproducible large scale benchmarks are too difficult
under various

- Networks - topology, bandwidth, congestion,
variance

- Servers - architecture, performance, load, variance
= Validity of scheduling framework modules
have not been well-investigated.

-~ Benchmarking cost of monitor / predictor under
real environment HIGH

A Performance Evaluation System:
Bricks

~ Performance evaluation system for
-~ Scheduling algorithms
-~ Scheduling framework components
(e.g., sensors, predictors)

= Bricks provides

-~ Reproducible and controlled evaluation
environments

- Flexible setups of simulation environments

- Evaluation environment for external Grid
components (e.g., NWS forecaster)

The Bricks Architecture

NetworkPredictor

ServerPredictor

Schedulizy Predictor |

N

Scheduler [« >|CResourceDB

NetworkMonitor

ServerMonitor

Senver

Cliery @a
Client)Q}T‘ﬂmt'%

_— . JNetwork

Client <

Vv

7 weKver

Server

Client toele
g\ sNetwork)

Grid Computing Environment

Vv

Server

= Client

-~ Represents user of the Grid system
- Invokes Grid computing Jobs

Grid Computing Environment

Amount of data transmitted to/from server,

of executed instructions
= Server
- Represents computational resources

= Network

-~ Represents the network interconnecting
the Client and the Server

Represented using queues

/

~

/' Predictor
I

———

\

4 N

Network]

ServerMonitor

r

N
Network \

Client % [Server
—

Communication/Server Models
using queues In Bricks

«~ Extraneous data/job model

Congestion represented by adjusting the amount of
arrival data/jobs from other nodes/users

O Need to specify only several parameters
X Greater accuracy requires larger simulation cost

~ lrace model

Bandwidth/performance at each step = trace data
such as observed parameters of real environment.

O Network/Server behaves as if real network/server
O Simulation cost lower than the previous model
X Need to accumulate the measurements

A Hierarchical Network
Topology on Bricks

Server C“e”t <

\/

Cllent
Server\ v
Server/ Server
WAN .
\\cne \ent >
Cllent trace
LAN Server
Cllent \QQ or
Clien Qansar

t
Cllent Server
Client \Server

Network

Scheduling Unit

= Network/ServerMonitor
Measures/monitors network/server status on the Grid
=~ ResourceDB

Serves as scheduling-specific database, storing the
values of various measurements.

= Predictor

Reads the measured resource information from
ResourceDB, and predicts availability of resources.

s A
25 SChEdU|er /' Predlctor
Allocates a new task invoked by a client %f‘
on suitable server machine(s) | L] servervanion
[: Network‘ \)
Client N Server

Overview of Grid Computing
Simulation with Bricks

Scheduling Un

Query predictions

i/‘

NetworkPredictod
ServerPredictor

Predictor

T l(Perform Predictions
I

//’ Predictions
Scheduler [c >!<R=,sourceDB \
T Query available servers
—

Inquire

Store observed information

NetworkMonitor

scheduling info

ServerMonitor_‘

Invoke
task

suitable server £ Return

Grid Computing Environment

S
Client

-Network Execute task

Monitor periodically |

end the task INe'[W‘OI’k:

Server

Return results

Incorporating External
Components

= Scheduling Unit module replacement

- Replaceable with other Java scheduling
components

-~ Components could be external - in particular,
real Grid scheduling components

? Allowing their validation and benchmarking
under simulated and reproducible
environments

= Bricks provides the Scheduling Unit SPI.

Scheduling Unit SPI

interface ResourceDB {
void putNetworklInfo();
void putServerinfo();
NetworklInfo getNetworkinfo();
Serverlnfo getServerinfo();

by

interface NetworkPredictor {
NetworkInfo getNetworkInfo();

by

interface ServerPredictor {
ServerPredictor getServerinfo();

Real / Original grid computing
scheduling components are available!

Ersistent N\WS Forecaste

NWS AP
NWS Adapter

Monitor

}
interface Scheduler { <

| Bricks Scheduling Unit SPI

ServerAggregate selectServers();

Bricks Grid Computing Environment

Performance of a Deadline
Scheduling Scheme

« Traditional scheduling ? deadline scheduling
-~ Charging mechanisms will be adopted.
-~ The Grids consists of various resources.
-~ The resources are shared by various users.
- Grid Users want the lowest cost machines which
process jobs in a fixed period of time
~ Deadline scheduling
-~ meets a deadline for returning the results of jobs

A Deadline Scheduling Algorithm

Compute available processing time
Telapsed = Tdeadline - Tstart
2. Compute target processing time
Ttarget = Telapsed X Opt (0 < Opt ? 1.0)
3. Estimate processing time on each server

Tsi = Wsend/Psend + Wrecv/Precv + Ws/Pserv (0 ? 1 < n)

Wsend, Wrecv, Ws: send/recv data size, and # of instructions

Psend, Precv, Pserv: estimated send/recv network throughput, and
server performance

4. Select suitable server i
Conditions: Diff = Ttarget — Tsi ? 0 && Min(Diff)
If Diff < 0 (?1) then Min(|Diff])

Evaluation of The Deadline
Scheduling Algorithms

= Scheduling algorithms
-~ Deadline: Opt = 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
-~ LOTH: select server i such as Min(Tsi)

~ Environment

- Grid Computing Environment
. # of local domain: 10, # of local domain nodes: 5-10
- Ave. LAN bandwidth: 50-100[Mbits/s]
- Ave. WAN bandwidth: 500-1000[Mbits/s]
- Ave. server performance: 100-500[Mops/s]
- Ave. server Load: 0.1
. Job processing manner on servers: FCFS
- Characteristics of client jobs
. Send/recv data size: 100-5000[Mbits]
. # of instructions: 1.5-1080[Gops]
- Ave. interval of invoking: 60(high load), 90(lower load) [sec]

Simulation Environment

The Prospero cluster:

66PE cluster at
Matsuoka Lab., Tokyo
Institute of Technology.

-~ Dual Pentium 111
800MHz

-~ Memory: 640MB
-~ Network: 100Base/TX

Experimental Results:

100

SUCCESS | so .

E' a
Opt = 0.5 =z| =]
fail |10}

VEI!ZII!fil

ioQ

50

Opt=1.0

DL [Minutes]

-200

Interval = 60 (High load)

*"Hs‘ﬁf*ruf I j%
++ ,ﬁ_ﬁ

+
+

-100 F

10
Elapsed Time [Hours]

20

DL [Minutes]

DL [Minutes)

100 T
T kb o o b
it T ++ o ¥ ¥ + ‘_:‘_ + ke
50 ¢ Lf :Ji-E *f f"‘}‘:"‘" 4+ {i+t$ +‘: L' ;—fi- F‘;*“ N '1&*1::‘3“.. ¥ 1
R e 11;;, o ‘:**h"‘ Ha et L d b
0 ooty R whohars e Y 3+
-t E + J * e T # i -
: L =] +
50 | = |
100 |]
150 |]
-200 L ! L
0 5 10 15 20
100 ;
-100 : - , . .
-13a0
=200

differences (DL=Tdeadline — Tend)

Interval = 90 (Lower load)

0 2 10 15 20
Elapsed Time [Hours)

Experimental Results

Interval = 90(Lower load), # of jobs = 445

are important.

= For smaller Opt, fail Ave | DL+ | DL- |#of | Fail | Cost
Q?r:glslebrec?]r'?:costs Opt | [min] | [min] | [min] | Fail | [96]
WnNI

become higher . 0.5 [30.83 33.92 |-20.98| 30 | 6.7/382.3
_ Estimation of 0.6 |34.77 |30.37 |-21.60| 35 | 7.9/338.8

prediction error Is 0.7 |38.83 |28.56 |-26.54 | 51 | 11.5|317.3

important.

NOT suitable 0.9 |47.82 |24.68 |-47.19| 71 |16.0 |273.4
Sharing scheduling Info. o149 76 [22.82 |-40.14 | 78 |17.5 |256.3
and fallback mechanisms

TH | 29.67 |34.93 [-13.01 | 33 | 7.4 |405.7

Related Work: Performance
Evaluation Environments

~ Coarse-grained simulator
= Bricks
-~ Simgrid [UCSD]

~ Emulator
-~ MicroGrid [UCSD]

=~ Actual testbed
-~ APGrid, Grid (US), eGrid, etc.
Accuracy of the experiments

Usability, Scalability, Reproducibility,
ease to control, long-term experiments

Conclusions

= The Bricks performance evaluation system for
Grid scheduling

-~ multiple simulated reproducible benchmarking
environments for

- Scheduling algorithms
- External Grid components

~ EXperiments of a Deadline scheduling scheme

-~ The Accuracy of prediction affects deadline
scheduling performance

-~ LOTH is not suitable under charging mechanisms.

-~ To avoid remarkable delay, sharing scheduling history
and fallback mechanisms are important.

Future Work

~ Simulation model

- Server model for various architectures (e.g., SMP
MPP) and local scheduling schemes (e.g., LSF)

- representation of parallel application tasks
(Parameter-sweep applications are available)

= System Issues

- Reconsideration of the Scheduling Unit design,
Interfaces, and data formats (c.f. Global Grid Forum)

- Providing benchmarking sets of Bricks simulations
= Evaluation

- Investigation of various job/task scheduling
schemes on Bricks (e.g. computational economy)

-~ Performance evaluation under real environment

