
Performance Issues in
Client-Server Global Computing

Atsuko Takefusa
Ochanomizu University

Satoshi Matsuoka
Tokyo Institute of Technology

Global Computing System
(a.k.a. the “Grid”)

n A global-wide high performance computing
environment on the Internet
n Client-Server systems (e.g., Ninf, NetSolve, Nimrod)
n Middleware model systems (e.g., Globus, Legion)
n Java-based systems (e.g., Ninflet, Javelin++)

client

serverclient

client

server
Internet

task

result

Performance Issues
n Various parameters govern Grid performance

n Execution environment
n # of clients, # of servers, network topology
n Hardware of clients, servers, networks

n Application and data sets
n System implementations
n Scheduling schemes

n Reproducible and controlled environments
n Large-scale benchmarks
n Low benchmarking cost
n Objective comparison between different systems

or scheduling frameworks

Our Approach
n Benchmarks under different parameters [SC97]

n Multiple client
n LAN/WAN
n Applications: Linpack, EP, SDPA
n Sytems: Ninf, NetSolve, CORBA [IPDPS2000]

n Performance evaluation system for the Grid:
Bricks [HPDC99]
n A discrete event simulator
n Reproducible and controlled environments
n Flexible setups of simulation environments
n Evaluation environment for existing global

computing components (ex. NWS)

Outline
n Benchmark results of client-server global

computing systems
n Multi-client benchmark using Ninf
n Comparison of various client-server systems

Ninf, NetSolve, CORBA
n Performance evaluation system: Bricks

n Overview of the Bricks system
n Incorporating existing global computing

components (ex. NWS)
n Bricks experiments

n Conclusions and future work

Ninf Multi-client Benchmarks
n Communication and overall performance

→ LAN, WAN (Single-site, Multi-site)
n Robustness of computational server

→ vector parallel server (Cray J90, 4PE)
n Remote library design and reuse

→ Task Parallel(1PE lib), Data Parallel(4PE lib)
n Interaction between computation and

communication for remote libraries
→ Linpack, EP

n Single site
n Multiple sites

ETL
[J90,4PE]

U-Tokyo [Ultra1]
(0.35MB/s, 20ms)

Ocha-U [SS10,2PEx8]
(0.16MB/s, 32ms)

NITech [Ultra2]
(0.15MB/s, 41ms)

TITech [Ultra1]
(0.036MB/s, 18ms)

Server

Clients

Internet

WAN Multi-client Benchmarking
Environment

0

10

20

30

40

50

60

1x
1

4x
1

1x
4

1x
1

4x
1

1x
4

1x
1

4x
1

1x
4

[Mflops]

600 1000 1400
Matrix Size / #clients x #sites

TITech
NITech
U-Tokyo
Ocha-U

0

0.1

0.2

0.3

0.4

0.5

0.6

1x
1

4x
1

1x
4

1x
1

4x
1

1x
4

1x
1

4x
1

1x
4

[MB/s]

600 1000 1400
Matrix Size / #clients x #sites

Effective Performance Communication Throughput

WAN(Single-site, Multi-site) Multi-
client Benchmark Results

0

10

20

30

40

50

600 1000 1400
Matrix Size

C
P

U
 U

til
iz

at
io

n
[%

]

Load A
verage

0

10

Single-site(c=4)
Multi-site(c=1x4)
Single-site(c=16)
Multi-sites(c=4x4)

Load Average

n The J90 server does not
saturate for n and c.
n Network bandwidth

saturation the cause.

n Utilization is low due to
network congestion, not
lack of jobs.

→ Utilization and Load
alone are NOT suitable
criteria for global
computing scheduling.

CPU Utilization

WAN Benchmark Results
Interaction betw. Comp. and Comm.

- CPU Utilization and Load Average-

Comparison between Client
Server Systems [IPDPS2000]
n Systems

n Ninf, NetSolve, CORBA(TAO, IIOP[TAO-OmniORB])
n LAN (100Base-TX)

n Server: Ultra60[300MHz×2, 256MB] at TITECH
n Client: Ultra2[200MHz×2, 256MB] at TITECH

n WAN (ave. 0.6[Mbyte/s])
n Server: Ultra60 at TITECH, Tokyo
n Client: SS5[85MHz, 32MB] at ETL, Tsukuba

n Benchmark routine: Linpack

LAN Communication
Throughput

0

2

4

6

8

10

12

0 200 400 600 800 1000 1200 1400 1600

Matrix Size

T
h
ro
u
gh
p
u
t
[M
B
yt
e
/
se
c
]

N inf
NetSolve
TAO
IIOP

n Throughput
differences between
systems are quite
small

n For smaller problem
size, Ninf seems to
be slightly slower

n TAO closely matches
Ninf

→TAO uses a private
comm. Protocol, which
seems to match the
efficiency of that of
Ninf

n Unlike LAN, IIOP and
NetSolve were slower

n High interoperability
does not come at the
expense of
performance.

WAN Communication
Throughput

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000 1200 1400 1600

Matrix Size

T
h
ro
u
gh
p
u
t
[M
B
y
te
/
se
c
]

Ninf

TAO

NetSolveIIOP

Summary of Benchmarks
n In WAN, limitation of communication throughput is

more significant
n We expect multiple client requests will be issued from

different sites, causing “false” lowering of load ave.
→The scheme which properly dispatches comm.-

/comp.-intensive jobs to the servers is important.
n Ninf and TAO are comparable in LAN and WAN
→However, ease-of-programming, availability of Grid

services, etc., differentiate dedicated Grid systems
and general systems such as CORBA.

Outline
n Benchmark results of client-server global

computing systems
n Multi-client benchmark using Ninf
n Comparison of various client-server systems

Ninf, NetSolve, CORBA
n Performance evaluation system: Bricks

n Overview of the Bricks system
n Incorporating existing global computing

components (ex. NWS)
n Bricks experiments

n Conclusions and future work

Overview of Bricks
n Consists of simulated Global Computing

Environment and Scheduling Unit.
n Allows simulation of various behaviors of

n resource scheduling algorithms
n programming modules for scheduling
n network topology of clients and servers
n processing schemes for networks and servers

(various queuing schemes)
using the Bricks script.

n Makes benchmarks of existing global
scheduling components available

The Bricks Architecture

Scheduler

NetworkMonitor ServerMonitor

Client
Network

Network
Server

Scheduling UnitScheduling Unit

Global Computing EnvironmentGlobal Computing Environment

ResourceDB

NetworkPredictor
ServerPredictor

Predictor

Scheduler

Predictor

NetworkMonitorServerMonitor

Client
Network

Network
Server

ResourceDB

Global Computing Environment
n Client

n represents user of global computing system
n invokes global computing Tasks

Amount of data transmitted to/from server,
of executed instructions

n Server
n represents computational resources

n Network
n represents the network interconnecting

the Client and the Server

Represented using queues

Scheduler

Predictor

NetworkMonitorServerMonitor

Client
Network

Network
Server

ResourceDB

Scheduling Unit
n NetworkMonitor/ServerMonitor

measures/monitors network/server status in global
computing environments

n ResourceDB
serves as scheduling-specific database, storing the
values of various measurements.

n Predictor
reads the measured resource information from
ResourceDB, and predicts availability of resources.

n Scheduler
allocates a new task invoked by a client
on suitable server machine(s)

Overview of Global Computing
Simulation with Bricks

Scheduler

NetworkMonitor ServerMonitor

Client
Network

Network
Server

Scheduling UnitScheduling Unit

Global Computing EnvironmentGlobal Computing Environment

ResourceDB

Monitor periodically

Store observed information
Inquire

suitable server

Query available servers

Query predictions

Execute task
Return results

NetworkPredictor

Invoke
task

ServerPredictor

Returns
scheduling info

Predictor

Sends the task

Predictions Perform Predictions

Incorporating External
Components

n Scheduling Unit module replacement
n Replaceable with other Java scheduling components
n Components could be external --- in particular, real

global computing scheduling components
→allowing their validation and benchmarking under

simulated and reproducible environments

n Bricks provides the Scheduling Unit SPI.

Scheduling Unit SPI
interface ResourceDB {

void putNetworkInfo();
void putServerInfo();
NetworkInfo getNetworkInfo();
ServerInfo getServerInfo();

}
interface NetworkPredictor {

NetworkInfo getNetworkInfo();
}
interface ServerPredictor {

ServerPredictor getServerInfo();
}
interface Scheduler {

ServerAggregate selectServers();
}

interface ResourceDB {
void putNetworkInfo();
void putServerInfo();
NetworkInfo getNetworkInfo();
ServerInfo getServerInfo();

}
interface NetworkPredictor {

NetworkInfo getNetworkInfo();
}
interface ServerPredictor {

ServerPredictor getServerInfo();
}
interface Scheduler {

ServerAggregate selectServers();
}

Bricks Global Computing Environment

NWSResource
DB

NWSNetwork
Predictor

NWSServer
Predictor

Monitor Scheduler

NWS
Persistent
State

NWS Forecaster
NWS
Sensor

NWS Adapter

Bricks Scheduling Unit SPI

NWS API

Case study

n NWS[UCSD] integration into Bricks
n monitors and predicts the behavior of global

computing resources
n has been integrated into several systems, such as

AppLeS, Globus, Legion, Ninf
n Orig. C-based API

→ NWS Java API development
→ NWS run under Bricks

The NWS Architecture
n Persistent State　（→Replace ResourceDB）

is storage for measurements
n Name Server

manages the correspondence between the IP/domain
address for each independently-running modules of
NWS

n Sensor（→Network/ServerMonitor）
monitors the states of networks/servers

n Forecaster（→ Replace Predictor）
predicts availability of
the resources

Name Server
Sensor

Forecaster

Persistent State

Sensor

Sensor
Persistent State

Forecaster

Bricks Experiments
n The experiments conducted by running NWS

under a real environment vs. Bricks
environment
Whether Bricks can provide
n A simulation environment for global

computing with reproducible results?
n A benchmarking environment for existing

global computing components?

Overview of Experiments

1. Actual environment

2. Bricks simulated environment

NWS Sensor
at TITECH

NWS Sensor
at ETL Observed

bandwidth
Observed

bandwidth

NWS Forecaster

Predicted
information
Predicted

information

Scheduler

NWS Forecaster

Monitor

Client
Network

Network
Server

NWS Persistent State
Predicted

information
Predicted

information

Observed
bandwidth
Observed

bandwidth

Bricks Experimental Results:
Comparison of Predicted Bandwidth

n The NWS Forecaster
functions and
behaves normally
under Bricks

n Both prediction are
very similar

real environment

Bricks

Under real environment(24hours)

Under Bricks (24hours) Date: 1999/2/1
NWS:
TITECH ⇔ ETL
network monitoring: 60[sec]
network probe :300[KB]
Bricks:
cubic spline interpolation

Bricks provides existing
global computing
components with a
benchmarking
environment

Related Work
n Osculant Simulator[Univ. of Florida]

n evaluates Osculant: bottom-up scheduler for
heterogeneous computing environment

n makes various simulation settings available
n WARMstones [Syracuse Univ.]

n is similar to Bricks, although it seems not have been
implemented yet.

n will provide an interface language(MIL) and libraries
based on the MESSIAHS system to represent various
scheduling algorithms

n has no plan to provide a benchmarking environment
for existing global computing components

→Bricks provides SPI

Conclusions
n We conducted benchmarks under various

environment such as multiple clients, systems.
n We proposed the Bricks performance evaluation

system for global computing scheduling
n multiple simulated reproducible benchmarking

environments for
n Scheduling algorithms
n Existing global computing components

n Bricks experiments showed
n Evaluation of existing global computing components

now possible

Future Work
n Performance evaluation under various parameters
n Simulation model of Bricks needs to be more sophisticated

and robust
n Task model for parallel application tasks
n Server model for various server machine architectures

(e.g., SMP，MPP) and scheduling schemes (e.g., LSF)
n Standardization of interface and data representations of

Bricks
n Communication component integration (e.g., direct

support for IP)
n Providing benchmarking set of the Bricks simulation
n Investigation of various scheduling algorithms on Bricks

