Ninf-G Version 4 Users Manual

This manual explains how to use Ninf-G Version 4 (installation, setup, and writing programs).
The reader is assumed to have knowledge and experience of the following.

m Some experience programming in C

m UNIX environment

m The make utility

m Globus Toolkit
This manual is comprised of the following components.

1. Overview

This section provides a brief overall description of GridRPC and Ninf-G. The terminology used in this
manual is also explained here.

2. Installation manual

This section explains how to install Ninf-G.

3. Creating and setting up server-side programs

This section explains how to write and set up programs that run on server machines.

4. Creating and setting up client-side programs

This section explains how to write and set up programs that run on client machines.
b. Examples
This section presents examples of Ninf-G usage.

6. Ninf-G IDL specifications

This section describes the syntax of the IDL processed by Ninf-G.

7. API reference
This section is the reference manual for the GridRPC API provided by Ninf-G.
(The text is in the format of a UNIX on-line manual.)

8. Utility command reference
This section is the reference manual for the utility commands provided by Ninf-G.
(The text is in the format of a UNIX on-line manual.)

9. Java API reference

This section is the reference manual for the GridRPC Java API provided by Ninf-G.
(To view this on your local site, you have to run javadoc)

10. Invoke Server Developer's Manual

This section describes how to develop a Ninf-G Invoke Server.

11. Known problems

This section points out problems currently known in Ninf-G.

e Ninf-G Tutorial documents and sample programs which users can use to learn how to develop Ninf-G
applications are included in doc/tutorial directory.

e Feedback on Ninf-G

Should you encounter any problems using Ninf-G, please describe the problem and send it to the
following mailing list.

ninf-users@apgrid.org

e Feedback on this manual

The Ninf development group is striving to improve this manual. Please send your comments or advice
about the manual to the following e-mail address.

ninf@apgrid. org

last update : $Date: 2007/07/24 08:36:20 $

1 Overview

1.1 GridRPC

1.2 New features of Ninf-G Version 4
1.3 Overview of Ninf-G

3.1 Clients and servers

3.2 Program hierarchy

3.3 Operating conditions

3.4 Requirements for operation
3.5

3.

Starting up a Ninf-G Executable
6 Registering and accessing Ninf-G Executable information
efinition of terms
inf-G Design
5.1 Reducing Overhead for Initialization of Function Handles
5.2 Making Data Transfers Efficient
5.3 Compensating for the Heterogeneity and Unreliability of a Grid Environment
5.4 Supporting Debugging of Applications
ompatibility with Ninf-G2
ssumed environment for using Ninf-G
1.7.1 Prerequisites for installing Ninf-G
1.7.2 Environment variables for installing / using Ninf-G
1.7.3 Execution Environment

\'
1
1
1
1
1
1

1.4
e 1.5

n
1
1
1
1

1.6
1.7

o
o
o
o
o
o
D
N
o
o
o
o
C
A
o
o
o

1.1 GridRPC

Ninf-G uses the Globus Toolkit to provide an operating environment for GridRPC.

GridRPC is middleware that provides a model for access to remote libraries and parallel programming for tasks
on a grid. Typical GridRPC middleware includes Ninf and Netsolve.

GridRPC is considered effective for use in the following cases.

e Commercial programs or libraries that use resources which are run on particular computers on the grid
are sometimes provided only in binary format and cannot be executed on particular computers. There
are also problems concerning licensing and source code compatibility. Furthermore, when using
resources that can only be used with particular machines, such as video cameras, electron
microscopes, telescopes and sensors, processing for the use of those resources on those machines is
necessary.

In such cases, an environment that allows the resources (including software) to be used on a particular
computer is needed.

e When there are many programs that execute routines that do a large amount of computation on
broadband servers on the grid, it takes a lot of time just to run parts of the program.

The time required to run the program can be shortened by off-loading such program parts to a
broadband server.

In cases when there are strong demands on memory and disk space on the client machine so that
broadband computation cannot be done, it is desirable to be able to do easily-understood offloading
with no consideration given to argument marshalling.

e Execution of Parameter Sweep by multiple servers on the grid
Parameter Sweep is a program that enables execution of computation on multiple servers in parallel,

using some subset of the parameters. The respective servers run independently using different
parameters, with virtually no dependence on other servers.

There are surprisingly many programs like Parameter Sweep.

The Monte Carlo method program is one of them.

Although Parameter Sweep can also be implemented with a Message Passing Interface (MPI),
programming is rather simple with GridRPC and Parameter Sweep can be executed to match the
(dynamically changing) scale of the grid (execution by multiple clusters, taking resource management,
security, etc., into account).

e Ordinary or large-scale task parallel programs on a grid

Task arrangement programs are easy to write with GridRPC. An API that supports the synchronization
of various task arrangements with mixed exchange among multiple clients and servers can be used.

GridRPC not only provides an interface for easy mathematical computation and scheduling of tasks for

parallel execution, but the execution of processing that matches the (dynamically changing) scale of
the grid is possible, as in the case of Parameter Sweep.

1.2 New features of Ninf-G Version 4

New features and functions have been added to Ninf-G Version 4 (Ninf-G4).
e Globus Toolkit Version 4 support

Globus Toolkit Version 4 (GT4) provides a new framework and a new mechanism to provide job
invocation (WS GRAM) and information services (Information Services: MDS4). Ninf-G4 supports the
WS GRAM and MDS4 functions. The Ninf-G configuration file provides attributes to use these
functions.

e Invoke Server

Ninf-G4 has a new module called Invoke Server. This module enables support of many type of job
invocation for Ninf-G. (WS GRAM, Pre-WS GRAM, UNICORE, ...)

Any job submission interfaces can be used for remote process invocation by implementing Ninf-G
Invoke Server for the interface. The detailed information on how to develop Ninf-G Invoke Server is
described in Invoke Invoke Server Developer's Manual.

e Cascading RPC

Ninf-G4 supports cascading RPC, which enables Ninf-G Executable to call GridRPC API. Cascading
RPC implements hierarchical RPC which is a implementation technique to make applications scalable
and to achieve high performance for fine-grained task parallel applications. Cascading RPC is available
for Invoke Server GT4py by delegating full proxy certificates. The detailed information of this feature
is available in Section 4.4.1. The other Invoke Servers such as Invoke Server SSH and Invoke Server
Condor may be enabling cascading RPC, however they are not officially supported.

e Compatibility

Ninf-G4 supports source code compatibility with Ninf-G Version 2 (Ninf-G2). Source codes of IDL
and client programs are compatible between Ninf-G2 and Ninf-G4. Format of client configuration file in
Ninf-G4 is expanded from Ninf-G2 and it is upper compatible with Ninf-G2.

Ninf-G4 uses the same protocol with Ninf-G2 for communication between Ninf-G Client and Ninf-G
Executable, thus mixed use of Ninf-G2 and Ninf-G4 is supported, i.e. Ninf-G2 client is able to call
Ninf-G4 server and vice versa.

In addition, GT2 functions (Pre-WS GRAM, Pre-WS MDS: MDS2) which are used by Ninf-G2 can be
used by Ninf-G4 as well. Basically, Ninf-G2 users do not need to worry about compatibility problems.
Only the user with interest in new Ninf-G4 features, must learn about the new capabilities of Ninf-G.

1.3 Overview of Ninf-G

Ninf-G is a set of library functions that provide an RPC capability in a Grid environment, based on the
GridRPC API specifications.

1.3.1 Clients and servers

Ninf-G and the application programs that use Ninf-G consist of Ninf-G Executables that execute
computation on server machines, and Ninf-G Clients that issue requests for computation to the Ninf-G

Executables from client machines.

The Ninf-G Executables consist of functions that perform calculations (calculation functions) and a Ninf-G
stub program that calls the calculation functions. Communication between clients and servers is accomplished

by TCP/IP using a proprietary Ninf-G protocol.
The relationships between clients and servers are illustrated in Fig. 1.

Client hachine =erver kachine

: : Minf-G stuby &
Application Ninf-G Executable Library

&

tﬂinf—G Client Librarj FLJILﬂCtiUﬂ

N ™ Calculation Beguest ./

Calculation BEesult

TCP/P Socket

Figure 1: Clients and servers

1.3.2 Program hierarchy

Ninf-G employs the capabilities provided by the Globus Toolkit (http://www.globus.org/) for server machine
authentication, information search, job start-up, communication and file transfer. The relations among
applications, Ninf-G, the Globus Toolkit and the OS are illustrated in Fig. 2.

Minf-3 Client Minf-3 Executable

Application Mint-G stub

Function

Minf-G Client Library

Invoke Server Minf-03 Executable Library

3lobus Toolkit 3lobus Toolkit

Q5 Q5

Figure 2: Program hierarchy
Ninf-G Clients are comprised of the following elements.

Applications

Programs written by Ninf-G users
Ninf-G Client Library

The set of API functions provided by Ninf-G for Ninf-G Clients
Globus Toolkit

The set of functions provided by the Globus Toolkit

Ninf-G Executables are comprised of the following elements.

Computation functions
Programs written by Ninf-G users
Ninf-G stub
A stub program produced by the Ninf-G stub generator
Ninf-G Executable Library
The set of API functions provided by Ninf-G for Ninf-G Executables
Globus Toolkit
The set of functions provided by the Globus Toolkit

1.3.3 Operating conditions

Ninf-G is supplied to the user as a source package, which includes the library functions (API) and utility
commands. The operating environment required for the library functions and utility commands are shown in

Table 1.

The usage of GT2 (implying the use of Pre-WS GRAM or MDS2) requires a GT2, GT3 or GT4 installation.

Every Globus Toolkit has compatibility with GT?2.
The usage of GT4 (implying the use of WS GRAM or MDS4) requires a GT4 installation.

Tablel: Operating environment

IGlobus Toolkit 2.2 or later (2.4, 3.2, 4.0)
IPython 2.3 or later

ITarget machine ISPARC

|Operating system [Solaris 9 (SunOS 5.9)
|C0mpiler |Sun Compiler or gcc 2.95

|G10bus Toolkit flavor |Vendorcc32dbg, vendorcc32dbgpthr, gcc32dbg, gcc32dbgpthr

B B

ITarget machine IPC-AT compatible (x86, Opteron)

|Operating system |Linux(+1)

|Compiler lacc 2.95, gee 3.0, 3.1, 3.2, 3.3, 3.4(+2)

IGlobus Toolkit flavor [gcc32dbg, gcc32dbgpthr, gecb4dbg, gecb4dbgpthr

ITarget machine IBM Power4
|Operating system [AIX 5.2
|Compiler IC for AIX Compiler, Version 6

IGlobus Toolkit flavor [vendorcc32dbg or vendorcc32dbgpthr

ITarget machine |Apple Mac (PowerPC)
|Operating system [MacOS X
|Compiler lacc 4.0.0

IGlobus Toolkit flavor [gcc32dbg or gcc32dbgpthr

(1) We are checking operation with the following distributions.

e RedHat 8.0
e SuSE 8.1
e RedHat Advanced Workstation 2.1

(+2) There are problems with gcc 2.96, so we recommend you use gcc 2.95.x or gee 3.0, 3.1, 3.2, 3.3, 3.4.
1.3.4 Requirements for operation

Ninf-G allows the definition of a single computation function (1) or multiple computation functions (2) for a
Ninf-G Executable running on a server machine. The execution schemes for these are shown in Fig. 3. In
either case, it is possible to execute just one computation function at a time on the Ninf-G Executable. To
execute multiple computation functions at the same time, it is necessary to run multiple Ninf-G Executables.
This is illustrated in Fig. 4.

In Ninf-G, the second scheme (2) is referred to as "Ninf-G Executable objectification” and the calling of the
computation is referred to as a "method call."

Client bdachine merver kachine
Mint-03

Inwvoke

add array()
{

f
F¥ caloulate®/
m b

Client bdachine merver kachine

Minf-3 Jint-G3 Executable
i - (add array()

1

ault : F¥ caloulate *f

rondl array)

Inwvoke [
%\\ F¥ caloulate *f

A} J

iy

i

g

Figure 3: Overview of operation

Client bdachine Server bMachine

W add array()

— 1

; ‘“\ M Calculate */
; Result ¥

Invoke
K \Seruer tAachine?
Use asynchronous RPC .

or Pthread to process ™ -

, add array()
in parallel, Res {

F¥ Clalculate®f
ks

Figure 4: Parallel execution

Ninf-G provides handles for manipulating a Ninf-G Executable. Different handles are used for the two
schemes, (1) and (2), described above. As shown in Table 2, two types of handles are provided, function
handles and object handles.

Table 2: Handles
IFunction handle [Used for manipulation of a Ninf-G Executable for which a single function is defined

|Object handle [Used for manipulation of a Ninf-G Executable for which multiple functions are defined

1.3.5 Starting up a Ninf-G Executable

Ninf-G Executables that run on server machines are started up from Ninf-G Clients, which run on client
machines. A Ninf-G Executable is started up by performing the following procedure using the job control
method provided by the Globus Toolkit or Invoke Server.

When running a Ninf-G Client program, however, there is no particular need for the user to be aware of this
mechanism.

e The case which uses a Globus Toolkit Pre-WS GRAM directly, where Invoke Server is not used.

1. A start-up request is sent from a Ninf-G Client to the gatekeeper, by Pre-WS GRAM.
2. The gatekeeper starts up the jobmanager.
3. The jobmanager starts up the Ninf-G Executable.

e The cases which use Invoke Server

1. If the appropriate Invoke Server is not started on the Client, the Invoke Server process is started
first.

2. Ninf-G Client sends request to the Invoke Server to start the job.

3. The Invoke Server invokes the Ninf-G Executable on the remote machine, by each Invoke
Server individually.

For example, if the Invoke Server for Globus Toolkit WS-GRAM is selected for use, the Invoke Server
requests the remote WS-GRAM to perform the invocation. The requested remote WS-GRAM invokes
the jobmanager, and the jobmanager invokes the Ninf-G Executable.

This process is shown in Fig. b.

Client kachine

server bachine 1 Pre-Ws GRAR

MinfG Client Invoke Invoke Inroke

Invoke '
\1 .] Minf-3
:
LY

Gate-keeper invokes Job manager, then exits.
Tob manager waits until the Minf-5 Executable finishes.

Invoke Invoke
Server Y Invoeke ooner achine 2 WS GRAM

Invoke Invoke

Minf3
Executahble

WE Serviet
Container

Job manager

Figure b: Starting up a Ninf-G Executable
1.3.6 Registering and accessing Ninf-G Executable information

Starting up a Ninf-G Executable requires path information that specifies the location of the Ninf-G
Executable on that server machine. Information on the functions that are called by the Ninf-G Executable is
also required. That information is collectively referred to as the Ninf-G Executable information. Ninf-G
provides the following methods of registering and accessing Ninf-G Executable information.

When running a Ninf-G Client program, however, there is no particular need for the user to be aware of this
mechanism.

o A file that contains the Ninf-G Executable information (a Local LDIF file) is placed on the client
machine. The Ninf-G Client program obtains the Ninf-G Executable information from this Local LDIF
file (Fig. 6).

zet information from LOIF files
Client hachine

Minf-3 Client

Get PATH Information and Fuhicton Information

LOIF file

Figure 6: Local LDIF file

e The path information is defined in the configuration file for the Ninf-G Client on the client machine.
The Ninf-G Client program obtains the path information from the configuration file and uses it to start
up the Ninf-G Executable on the server machine. The function information is obtained from the Ninf-G
Executable when it is started up (Fig. 7).

Getinformation from the Ninf-3 Exzecutable

Client kachine Server Machine

Minf-G Client MinfG Executable
Invoke

D

et Funpton Information
Get PATH Information

I 3

Figure 7: Ninf-G Executable

e The LDIF file is registered in the MDS(*) of the server machine. The Ninf-G Client program obtains
the Ninf-G Executable information from the MDS (Fig. 8).

(*) The information search function provided by the Globus Toolkit.

et information from kDS
Client Machine merver kachine

Minf-G Client MADS

D

':-::.'rEI Ninf-G Exzecutable Informat

Figure 8: MDS

1.4 Definition of terms

Ninf-G Client
This is a program written by a user for the purpose of controlling the execution of computation. It is
obtained by linking a user-written application program to the Ninf-G Client Library (and Globus
Toolkit).

Ninf-G Client Library

The Ninf-G Client Library puts together the API used by application programs that run on client
machines (Ninf-G Client API).

Ninf-G Executable
This is a program written for the execution of user requests for computation to be performed on a
remote computer. It is obtained by linking a user-written computation function to stub code and the
Ninf-G Executable Library (and Globus Toolkit). The stub code is produced by the stub generator
according to the interface specifications of the user-defined computation function. The interface
specifications are written in the Ninf-G IDL (Interface Description Language) specified by Ninf-G.
Ninf-G Executable Library

The Ninf-G Executable Library puts together the API (Ninf-G Executable API) used by a Ninf-G
Executable.

Client (machine)
A machine that is running a Ninf-G Client.
Server (machine)

A machine that is running a Ninf-G Executable.

Function handle

A function handle is a data item whose type is grpc_function_handle t. The function handle represents a
mapping from a function name to an instance of that function on a particular server.

Object handle
An object handle is a data item whose type is grpc_object_handle t np. The object handle represents a
mapping from a class name to an instance of that class on a particular server. The instance is called a
Ninf-G remote object, and it is able to contain multiple methods.

Remote function

A computational function written by the user. (It might be only a single computation function for a
Ninf-G Executable)

Remote method

A computational function written by the user. (It might be multiple computation functions for a Ninf-G
Executable)

Session
A session extends from the time an RPC is made to the time its execution is completed.

In Ninf-G, a session extends

from the time grpc_call() is called until the time it is completed (returns)

from the time grpc_invoke() is called until the time it is completed (returns)

from the time grpc_call_async()is called until the time grpc_wait*() is completed
from the time grpc_invoke_async() is called until the time grpc_wait+() is completed.
GridRPC API

This is the standard API that systems implementing GridRPC should have. For the GridRPC C
language API, standardization by the GGF WG is currently still in process.

Ninf-G IDL

IDL is the acronym for Interface Definition Language. It is a language for writing interfaces for the
remote functions and remote methods defined by Ninf-G Executables.

Module name

This is the identifier for Ninf-G Executables. The user may specify any character string in the Ninf-G
IDL.

1.5 Ninf-G Design
1.5.1 Reducing Overhead for Initialization of Function Handles

Ninf-G provides the following functionalities for reducing overhead for initialization of function handles.

e Creating multiple function handles via a single GRAM call and providing an API for utilizing the
functionality.

A single GRAM call usually takes several seconds for GSI authentication and a process invocation via
the Globus jobmanager. This indicates that it will take more than several minutes to tens of minutes for
hundreds of GRAM calls on a large-scale cluster. Also, many Globus jobmanager processes which will
be launched on the front-end node will increase the load on the front-end node and cause the creation
of additional overhead.

Ninf-G implements a functionality which enables the creation of multiple function handles via a single
GRAM call and provides an API for utilizing this functionality. For example,
grpc_function handle array default np() takes three arguments, a pointer to an array of function
handles, the number of function handles, and the name of the remote executable. When
grpc_function handle array default np() is invoked, Ninf-G will construct an RSL in which the count
attribute is specified as the number of function handles, and pass the RSL to the Globus GRAM. This
allows invocation of multiple remote executables, i.e. initialization of multiple function handles, via a
single GRAM call.

e Bypass MDS lookup for information retrieval

Querying an MDS server for getting information on remote executables is a more difficult problem from
a performance point of view, since it takes several minutes if the MDS server contains a large MDS
tree. Although a useful resource discovery mechanism is essential for the acceptance of grid
computing, we need to provide a practical scheme for information retrieval. Several approaches could
be candidates for the implementation of information retrieval. For example, in CORBA, both a client
and servers generate stubs and share information statically. Although this approach is straightforward
and reduces the overhead for information retrieval, client programmers need to prepare IDL files for
stub generation which constitutes a burden on client programmers. Ninf-G implements a functionality
which enables it to retrieve the necessary information not from an MDS server, but from Local LDIF
files which are placed on the client machine in advance. When Ninf-G Executables are generated on
the server machine, the LDIF files are generated by the Ninf-G IDL compiler as well. The LDIF files
should be copied to the client machine and can be specified in the client configuration file which is
passed to the application as the first argument.

1.5.2 Making Data Transfers Efficient

Ninf-G provides the following functionalities for efficient data transfers and elimination of redundant data
transfers.

e [mplementation of a Ninf-G remote object

Although the semantics of a remote executable is "stateless,” it is desirable to provide a "stateful”
remote executable since typical applications repeat computation for large data sets with different
parameters. In the case of "stateless" executables, the executable needs to send the data in every
remote library call, which would be a severe problem in a Grid environment. Ninf-G provides a
"stateful" remote executable as a "Ninf-G remote object.” A Ninf-G remote object can hold a "state"
and be used to eliminate redundant data transfers between a client and servers. Ninf-G provides API
functions such as grpc object handle_init np() and grpc_invoke np() for utilizing Ninf-G remote objects.
grpc object handle init np() initializes a Ninf-G remote object and creates an object handle which is
represents a connection between the client and the Ninf-G remote object. grpc_invoke np() calls
methods of the Ninf-G remote object as described in the Ninf-G IDL. A Ninf-G remote object is an
instance of a class which is defined in an IDL file using DefClass statement on the server side. Multiple
methods, which can be invoked by a client using a client API such as grpc_invoke np(), can be defined
in a class using the DefMethod statement.

e Compression of transferred data

Ninf-G enables data transfers with compression. A flag which specifies whether to enable or disable
data compression, and a data size as the threshold for compressing data can be specified in the client
configuration file.

1.5.3 Compensating for the Heterogeneity and Unreliability of a Grid Environment

In order to compensate for the heterogeneity and unreliability of a Grid environment, Ninf-G provides the
following functionalities:

e Client configuration formats for detailed description of server attributes

The GridRPC API specifies that the first argument of a client program must be a "client configuration
file" in which information required for running applications is described. In order to compensate for the
heterogeneity and unreliability of a Grid environment, Ninf-G provides client configuration formats for
detailed description of server attributes such as the Globus jobmanager, and a protocol for data
transfers, etc.

e Timeout value for initialization of a function handle and RPC

If a server machine is fully utilized, requests for initialization of function handles and remote library
calls may be stuck in the queue and will not be launched for a long time, and this may cause deadlock
of applications. Ninf-G provides a functionality to specify a timeout value for initialization of function
handles as well as remote library calls. The timeout values can be specified in the client configuration
file.

e Heartbeat

A remote executable reports a heartbeat message to the client at a pre-specified interval. Ninf-G
provides an API function for checking the heartbeat from the remote executable. The interval can be
specified in the client configuration file.

e Client Callbacks

Ninf-G provides a functionality called "client callbacks"” by which a remote executable calls a function
on the client machine. The client callback can be used for sharing status between the server and the
client. For example, the client callback can be used for showing the interim status of computation at
the client machine and in interactive processing.

e Cancellation of a session

Ninf-G provides a server-side API function named grpc_is canceled() for checking the arrival of cancel
requests from the client. If the client calls a grpc_cancel () function, grpc_is canceled() returns 1. In
order to implement cancellation of a session, remote executables are required to call grpc_is_canceled()
at an appropriate interval and return by itself, if grpc_is_canceled() returns 1.

1.5.4 Supporting Debugging of Applications

Ninf-G provides functionalities which are useful for debugging. Ninf-G enables redirection of stdout and
stderr of remote executables to the client machine. Log messages generated by Ninf-G and the Globus
Toolkit can also be stored on the client machine. Furthermore, Ninf-G enables the launch of "gdb" on the
server machine when a remote executable is launched on the server. These functionalities are made available
by turning on the flags in the client configuration file.

1.6 Compatibility with Ninf-G2

e Source code compatibility

The versions are source code compatible. Client-side application programs and server-side remote
function programs that are used with Ninf-G2 can be used without modification.

e other compatibility

The environment variable name, utility command name, and configuration file attribute names have
compatibility with Ninf-G2.

1.7 Assumed environment for using Ninf-G
1.7.1 Prerequisites for installing Ninf-G

e If GT4 is used:

1. GT4 Pre-WS MDS should be setup (using configure - -enable-prewsmds option) if MDS2 is
needed by the user.

2. GT4 Information Services C bindings should be setup if MDS4 on C Client is needed by the
user.

3. The globus_core must be installed, which is not installed by binary installer. Source installer
installs this module.

o If GT? is used:

1. All SDK bundles of the Globus Toolkit (resource, data, and information) must be built from
source bundles.

2. All SDK bundles of the Globus Toolkit (resource, data, and information) must have a common
flavor by which those bundles are built. The flavor should be specified as the Globus flavor when
installing (configuring) Ninf-G except when the flavor is gcc32dbg.

e Python 2.3 or later must be installed.

1.7.2 Environment variables for installing / using Ninf-G

e GPT_LOCATION must be set to the GPT installation directory (if GT3 or GT4 is used,
GPT_LOCATION must be set as the same location as GLOBUS_LOCATION).

e GLOBUS_LOCATION must be set to the Globus Toolkit installation directory.

e Reading the user setting file for use by the Globus Toolkit, read {GLOBUS_LOCATION}/etc/globus-
user-env.{sh,csh}.

e NG DIR must be set to the Ninf-G installation directory.

o Feadin% the user use environment setting file for use by Ninf-G, read ${NG DIR}/etc/ninfg-user-env.
sh,cshy.

e NG_LOG_LEVEL specifies the loglevel that controls the produced error/warning messages during
executions. This variable is set to 2 (Error) by sourcing ${NG_DIR}/etc/ninfg-user-env.{sh,csh}.

1.7.3 Execution Environment

e Ninf-G users must be capable of submitting jobs using the Globus Toolkit from a client machine on
which Ninf-G Client programs will run to server machines on which the Globus gatekeeper is running
and Ninf-G Executables will be launched by the Globus jobmanager.

e The server machines must be IP-reachable for the client machine, that is, the server machines should
be capable of establishing a connection from the server machines to the client machine. This implies
that the private [P address nodes can be utilized by Ninf-G if (1) the Globus gatekeeper is running on
a gateway node, (2) a Globus jobmanager such as jobmanager-pbs is available for launching jobs on

backend nodes, and (3) NAT is available on the gateway node so that backend nodes can connect to
the client machine.

last update : $Date: 2008/09/29 03:21:51 §

2 Installation manual

e Prerequisites for installing Ninf-G
e 2.1 Downloading the Ninf-G package
e 2.2 Creating a "ninf" user
° 2
® 2
[)

:3 Installation

4 Configure command options
appendix : Installing GT4

o a.l Installing the Globus Toolkit
o a.2 About Usage Statistics Collection by Globus Toolkit

o a.3 Setting up the environment

o a.4 Starting the Container

o a.h Testing the WS GRAM

o a.6 Installing Index Service Bindings

o a.7 Installing GT4 by Binary installer
o a.8 Installed file composition

Prerequisites for installing Ninf-G

e [f GT4 is used:

1. GT4 Pre-WS MDS should be setup (using configure - -enable-prewsmds option) if MDS2 is needed by
the user.

2. GT4 Information Services C bindings should be setup if MDS4 on C Client is needed by the user.

3. The globus_core must be installed, which is not installed by binary installer. Source installer installs this
module.

o If GT2 is used:

1. All SDK bundles of the Globus Toolkit (resource, data, and information) must be built from source
bundles.

2. All SDK bundles of the Globus Toolkit (resource, data, and information) must have a common flavor by
which those bundles are built. The flavor should be specified as the Globus flavor when installing
(configuring) Ninf-G except when the flavor is gcc32dbg.

e Python 2.3 or later must be installed.

Note: We recommend you use =pthr flavor. Some features don't work with non- =pthr flavor.
2.1 Downloading the Ninf-G package

Download the Ninf-G package from the download Web page
(_http://ninf.apgrid.org/packages/welcome.html).

2.2 Creating a "ninf" user

It is recommended that you create a "ninf" user on the installation system.

It is also possible, however, to install Ninf-G in a location where the user has read and write privileges under general
user privileges (that user's home directory, for example).

2.3 Installation

e Globus libraries built from source bundles must be installed on all nodes on which Ninf-G Clients and
Executables may run. The libraries may be installed in a shared directory.

e Ninf-G libraries must be installed on the nodes on which Ninf-G Clients and Executables will be compiled.
The libraries may be installed in a shared directory.

e The server install command for registering the host information needs to be executed only on a front-end
node on which the Globus gatekeeper is running.

e Expanding the source files

Move the files of the downloaded package to the directory in which the source files are to be expanded and
then use the following command to expand the Ninf-G package files. (The 4.x.x in the command is the version
number.)

% gunzip -c ng-4.x.x.tgz | tar xvf -

Executing the above command will create a "ng-4.x.x" directory and expand the Ninf-G source files in that
directory.

Note: The Ninf-G package is created by GNU tar, so it requires you to use GNU tar to expand the package.
Running the configure script

(Move to the directory in which the source files are expanded.)

% cd ng-4.x.x

% ./configure

Executing the above command, the host software environment is examined, and the execution environment for
the tools used by compile is prepared (creating Makefile, etc.).

Parameters such as those for specifying a particular Ninf-G installation directory can be included as shown
below.

% ./configure —-prefix=/usr/local/ng --with-globusFlavor=gcc32dbgpthr
In this example, the following parameters are specified.

o The path to the Ninf-G installation directory
o The flavor of Globus Toolkit to be used

If you do not know about flavors, ask the administrator for flavors which the system-installed Globus Toolkit
implies. (The flavors may be obtained by $GPT_LOCATION/shin/gpt-query command instead.)

If the Ninf-G user desires to use MDS2 or MDS4 on a C client, --with-mds2 or - -with-mds4 options must be
specified.

Other options are described in section 2.4. The options that can be used with the configure command can be
viewed with the following command.

% ./configure --help
Executing the make command

Execute the following command in the directory for expanding the source files.

% make
Executing make generates the libraries needed by Ninf-G as well as an executable binary file.

In Ninf-G, the Makefile is created by using the GNU autoconf configure script. If there is code in the Makefile
written with the POSIX make program that cannot be executed, try using the GNU make program.

To configure either the server environment only or the client environment only, run one of the following make
commands.

o To configure the server environment only

The following command can be used to configure the server environment only.

% make server
o To configure the client environment only

The following command can be used to configure the client environment only.

% make client

¢ Installing the compiled files, etc.
With owner privileges for the directory in which the files are to be installed (specified by a - -prefix at the time
of configure command; the default is "/usr/local"), execute the following command from the directory in which
the source files were expanded.

If you want to specify a number of CPUs for MPI for LocalLDIF(+.ngdef), you have to modify < package_dir >
/etc/server.conf and change the variable of MPIRUN NO_OF CPUS.

% make install

Executing the above command copies the libraries and executable binaries created by executing the make
command and the commands needed to run Ninf-G to the specified directory.

To install either the server environment only or the client environment only, execute the make command as
described below.

o To install the server environment only

It is possible to install only the server environment by executing the following command.

% make install server
o To install the client environment only
It is possible to install only the client environment by executing the following command.

% make install client

(The following commands are executed only on the server machine (where the Ninf-G Executable is run).

If MDS is not being used, the following tasks are not necessary. In that case, owner user privileges for
$GLOBUS_LOCATION are also not needed.)

e Registering the host information

If the Ninf-G Client uses MDS2 or MDS4, MDS setup is required. This is required only on gatekeeper
nodes.

Execute the following command with owner user privileges for §GLOBUS_LOCATION (for example, "globus").

If you want to specify the number of CPUs for MPI, you have to edit server install and change the variable of
MPIRUN NO_OF CPUS.

% cd ng-4.x.x/utility/script

% ./server_install
e Settings for provision of Ninf-G Executable information by MDS2
If the Ninf-G Client uses MDS2, MDS2 setup is required. This is required only on gatekeeper nodes.
Execute the following items with owner user privileges for §GLOBUS_LOCATION (for example, "globus").
o Add the following line to ${GLOBUS_LOCATION}/etc/grid-info-slapd.conf.

”include ${GLOBUS LOCATION}/etc/grid-info-resource.schema”

Below that line, add the following line.

”include ${GLOBUS LOCATION}/etc/grpc.schema”

o Restarting MDS

% ${GLOBUS LOCATION}/sbin/globus-mds stop

% ${GLOBUS LOCATION}/sbin/globus-mds start
e Settings for provision of Ninf-G Executable information by MDS4

If the Ninf-G Client uses MDS4, MDS4 setup is required. This is required only on gatekeeper nodes.

Execute the following items with owner user privileges for §GLOBUS_LOCATION (for example, "globus").

o Building and deploying service
% cd ng-4.x.x/infoService
% ant

% ant deploy
o Editing GrpcInfoService configuration

Edit URL in wsa:Address element in $GLOBUS_LOCATION/etc/ng4grpcinfo/regist.xml . (You'll have
to modify example.org to the IP-address or FQDN of your host.)

Edit the hostName in $GLOBUS_LOCATION/etc/ng4grpcinfo/jndi-config.xml to match the following
description.

<{parameter)
<name>hostName</name>
{value>example.org</value>
{/parameter)

Note. This hostname is the name of the GRAM server host.

Edit the infoDirPath in $GLOBUS LOCATION/etc/ngdgrpcinfo/jndi-config.xml to match the following
description.

<{parameter>
<name>infoDirPath</name>
{value>/usr/local/gt4.0.0/var/gridrpc</value>
{/parameter>

This may be $GLOBUS LOCATION/var/gridrpc .
Append following line to SGLOBUS LOCATION/container-log4j.properties .

log4j.category.org.apgrid=INFO

Restart the WS Servlet container, and watch the console output. If the following message is output,
registration was successful.

???97-2?7-77 ?7:7?:77,?7?? INFO impl.GrpclnfoHome [Thread-?, run:???] done rescan to regist

Note: If you change the information of the executable in $§GLOBUS_LOCATION /var/gridrpc, the
following command forcibly updates this information immediately.

% java -DGLOBUS LOCATION=$GLOBUS LOCATION ¥
-classpath $GLOBUS LOCATION/Iib/ng4grpcinfo. jar:$CLASSPATH ¥
org.apgrid.ninf.ng4.grpcinfo.client.RescanClient ¥
-s https://[IP-ADDR or FQDN]:8443/wsrf/services/org/apgrid/ninf/ng4/grpcinfo/GrpclinfoService

2.4 Configure command options

The available options can be displayed with the following command.

% ./configure —-help

The options that can be used with the configure script are described below.
e General configure command options

The general configure command options have no effect on the Ninf-G functions.

General configure options

- -quiet, --silent |Do not print ‘checking...' messages

| option | description
|- -cache-file=FILE |Cache test results in FILE

|- -help |Print help message

|- -no-create IDo not create output files

|

|

- -version |Print the version of autoconf that created configure

e Directory and file names

Specify the location for installing Ninf-G.

Specify the installation path for the targets listed below.

The default values are shown.

Directory and file names

- -program- prefix=PREFIX

- -program- suffix=SUFFIX

- -program- transform-name=PROGRAM

IPrepend PREFIX to installed program names

|Append SUFFIX to installed program names
IRun sed PROGRAM on installed program names

| option | default | description

|- -prefix=PREFIX |/ usr/local |Install architecture -independent files in PREFIX
|- -exec - prefix=EPREFIX lsame as prefix IInstall architecture -dependent files in EPREFIX
|- -bindir=DIR |EPREFIX /bin [User executables in DIR

|- -sbindir=DIR |EPREFIX/sbin [System admin executables in DIR

|- -libexecdir=DIR |EPREFIX/libexec [Program executables in DIR

|- - datadir=DIR |[EPREFIX/share |Read-only architecture -independent data in DIR
|- -sysconfdir=DIR |EPREFIX/etc IRead-only single -machine data in DIR

|- - sharedstatedir=DIR |EPREFIX/com IModifiable architecture -independent data in DIR
|- -localstate=DIR |EPREFIX /var IModifiable single-machine data in DIR

|- -lib-dir=DIR |EPREFIX/lib |Object code libraries in DIR

|- -includedir=DIR |EPREFIX/include |C header files in DIR

|- -oldincludedir=DIR |/usr/include IC header files for non-gcc in DIR

|- -infodir=DIR |EPREFIX/info |Info documentation in DIR

|- -mandir=DIR |EPREFIX /man IMan documentation in DIR

|- -sredir lconfigure dir or ... [Find the sources in DIR

|

|

|

e Features and packages

Features and packages

option

disable -FEATURE

| default |

description

|Do not include FEATURE (same as - -enable- FEATURE=no)

enable - FEATURE[=ARG] |ARG=yes

Include FEATURE

with-PACKAGE[=ARG] [ARG=yes [Use PACKAGE
without-PACKAGE |Do not use PACKAGE (same as --with- PACKAGE=no)

- -with- - e i

globusFlavor=FLAVOR gced2dbgpthr |Specify Globus runtime library flavor

|- -with-mds |Obsolete option (use mds2 or mds4)

L Include functions for getting information on servers and
with-mds2 1o functions from PreWS MDS

R Include functions for getting information on servers and
with-mds4 1o functions from WS MDS

- -with-zlib Z\?:ilgble Use zlib for compression

|- -with-largefile ves |Support largefile

|- -with-cc=CC lcc |Specify C compiler to use

|- -with-opt=OPT |Specify C compiler options for optimization

- -with-debug=0OPT

Specify C compiler options for debuggable executable file

creation

with-cppflag=OPT |Specify C preprocessor options

|_ -
|- -with-python |Specify python command path
|_ -

with-naregi [no |Support NAREGI SS.
- -With-_ Just/naregi _Specify the directory in which NAREGI Middleware has been
naregidir=NAREGIDIR installed.
|- -enable-gcc |Allow use of gcc if available
|- -enable-debug |no |Enab1e generate executable with debug symbol

appendix : Installing GT4

Ninf-G requires Globus Toolkit installation. This appendix shows how to accomplish GT4 installation. When you
install GT4, refer to Globus Website for exact information.

This section gives hints for installing GT4.
a.1l Installing the Globus Toolkit

Make the temporary directory.

% mkdir dirForlInstaller

Install GT4 (we recommend Version 4.0.1 or later (not 4.0.0) and "source" installer).

% cd dirForlinstaller

% gunzip -c¢ [TARBALL LOCATION]/gt4.0.1-all-source-installer.tar.gz | tar xf -
% cd gt4.0.1-all-source-installer

% ./configure —-prefix=/path/to/gt4-install

% make

% make install

Note: Use of MDS2 on Ninf-G requires the --enable-prewsmds option on GT4.
See also information about setting the Globus Toolkit at following URL.
http://www.globus.org/toolkit/docs/4.0/admin/docbook/

Ninf-G4 requires some components of the Globus Toolkit. Following URLs provide information about setting of
components.

e Security Configuration of WS container http://www.globus.org/toolkit/docs/4.0/admin/docbook/ch06.html

e GridFTP (Ninf-G4 requires GridE'TP server on the remote server) http://www.globus.org/toolkit/docs/4.0
/admin/docbook/ch08.html

e RFT http://www.globus.org/toolkit/docs/4.0/admin/docbook/chl10.html

e WS-GRAM (GRAM4) http://www.globus.org/toolkit/docs/4.0/admin/docbook/chl1.html

a.2 About Usage Statistics Collection by Globus Toolkit

Globus Toolkit provides Usage statistics. (See http://www.globus.org/toolkit/docs/4.0/Usage_Stats.html) If you
desire to prevent this, match the following configuration changes.

Set the environment variable "GLOBUS USAGE OPTOUT" to "1."
e (csh, tcsh, etc)
% setenv GLOBUS_USAGE_OPTOUT 1
e (sh, bash, etc)
$ GLOBUS USAGE OPTOUT=1
$ export GLOBUS USAGE OPTOUT

Comment out the "usageStatisticsTargets" parameter in the configuration file §GLOBUS_LOCATION/etc
/globus_wsrf core/server-config.wsdd

This setting,
{globalConfiguration>

{parameter name="usageStatisticsTargets”
value="usage-stats.globus.org:4810”7/>

Delete or comment out as follows.
{globalConfiguration>

{l--parameter name="usageStatisticsTargets”
value="usage-stats.globus.org:4810”/-->

Also check the following URLs.

e http://www.globus.org/toolkit/docs/4.0/common/javawscore /admin-index. html#s-ja vawscore -
Interface_Config_Frag-usageStatisticsTargets
e http://www.globus.org/toolkit/docs/4.0/data/gridftp/admin-index.html#s - gridftp-admin-usage

a.3 Setting up the environment

Setup the environment variable and execute the script for setting up the environment.

e (csh, tcsh, etc)

% setenv GLOBUS LOCATION /path/to/gt4-install

% source $GLOBUS LOCATION/etc/globus-user-env.csh
e (sh, bash, etc)

$ GLOBUS LOCATION=/path/to/gt4-install
$ export GLOBUS LOCATION
$. $GLOBUS LOCATION/etc/globus-user-env. sh

a.4 Starting the Container

% cd $GLOBUS LOCATION
% ./bin/globus-start-container

Starting the SOAP server at: https://[IP-ADDR]:8443/wsrf/services/ with the following services:

[1]: https://[IP-ADDR]:8443/wsrf/services/TriggerFactoryService
[2]: https://[IP-ADDR]:8443/wsrf/services/DelegationTestService

théj: https://[I1P-ADDR]:8443/wsrf/services/CASService
[49]: https://[I1P-ADDR]:8443/wsrf/services/ManagedJobFactoryService

a.b Testing the WS GRAM

Test the WS GRAM using following procedures.

% cd $GLOBUS LOCATION
% ./bin/grid-proxy-init
(input your passphrase)
% globusrun-ws -submit -job-description-file ¥
$GLOBUS LOCATION/test/globus wsrf gram service java test unit/test.xml
Submitting job...Done.
Job ID: wuid:[UUIDUUID-UUID-UUID-UUID-UUIDUUIDUUID]
Termination time: MM/DD/CCYY HH:MM GMT
Current job state: Unsubmitted
Current job state: Done
Destroying job...Done.

a.6 Installing Index Service Bindings

If the Ninf-G C Client uses MDS4, the Index Service Bindings should be installed with Globus Toolkit.

Execute the following items with owner user privileges for §GLOBUS_LOCATION (for example, "globus").

% cd gt4.0.1-all-source-installer

% make globus ¢ wsrf core bindings-thr

% make globus handler ws addressing-thr

% $GLOBUS LOCATION/sbin/gpt-build index service bindings-1.2.tar.gz [flavor]

Note: threaded flavor recommended.
e How to build an index_service bindings package
An index_service_bindings package is not prepared at the beginning. The user must create the package.

Note: For convenience, the Ninf-G4 package includes a generated index_service_bindings package on
ng-4.x.x/external/index_service.
1. Copy the non-thread flavor's template archive (the with-thread flavor version has problems).
% cp ¥

gt4.0.1-all-source-installer/source-trees/wsrf/c/parser/cgen/source/globus wsrf bindings template. tar.gz ¥
$GLOBUS LOCATION/share/globus ¢ _wsrf _cgen

2. Edit client-stub-source -doclit.tmpl.

Edit and remove line 657 of $GLOBUS_LOCATION/share/globus_c_wsrf cgen/client-stub-source -
doclit.tmpl .

646 if(chain)
647 {
648 globus _handler chain register_invoke(
649 chain,
650 GLOBUS HANDLER TYPE REQUEST,
651 request->client handle->message,
652 $internal func prefix$ i request done callback
653 request);
654 }
655 }
656
! 657 globus mutex unlock(&request->mutex); =--- xxx REMOVE THIS LINE sx¥x
658 break;
659
660 case $sname. toUpperCase()$ REQUEST INVOKING HANDLERS:
661
662 if(request->done)
663 {
664 if(request->result 1= GLOBUS SUCCESS)
665 {
666 result = request->result;
667 goto error_exit;
668

% $GLOBUS LOCATION/bin/globus-wsrf-cgen -no-service ¥
-s index_service —flavor gcc32dbg -d $PWD/bindings ¥
$GLOBUS LOCATION/share/schema/mds/index/index service.wsdl

The package is created in bindings/index_service_bindings-1.2.tar.gz
a.7 Installing GT4 by Binary installer

It is recommended to install Globus Toolkit from source installer. If Globus Toolkit is installed from binary installer,
you need to install globus_core with the following command:

% $GLOBUS LOCATION/sbin/gpt-build -nosrc <flavor>

Where flavor is the Globus Toolkit flavor you're passing to Ninf-G configure script.
(GT4 Admin Guide B.4. Using globus-makefile-header with a binary distribution)
a.8 Installed file composition

$GLOBUS LOCATION/

tetc

| +grid-info-resource-Idif.conf (optional) (x1)
| +grpc.schema (optional)

| +gpt

| | +packages

|| +ng4grpcinfo (optional)

|| +undeploy. xml (optional)

| +ng4grpcinfo (optional)
| +regist.xml (optional)
| t+server-config.wsdd (optional)
| +jndi-config.xml (optional)
+1ib
| +ng4grpcinfo. jar (optional)
| +ngdgrpcinfo_stubs. jar (optional)
t+share
| +schema
| +ng4grpcinfo (optional)
| +Grpcinfo flattened.wsdl (optional)
| +Grpclinfo.wsdl (optional)
| +Grpcinfo service.wsdl (optional)
| +Grpcinfo _bindings.wsdl (optional)
+var
+gridrpc (optional)

t+catldif (optional)

+root. Idif (optional)

+x. 1dif (optional)

%1) The information of Ninf-G was added to this file.

$NG DIR

tbin

tbase64encode

+globusflags

+ng_cc

tng delete functions

+ng dump functions

+ng_gen

+ng gen dif

+ng_invoke server.Condor (optional)

+ng invoke server.GT2c

+ng_invoke server.GT4java (optional)

+ng_invoke server.GT4py

+ng_invoke server, SSH

+ng_invoke server.NAREGISS (optional)

+ng version

t+doc

| t+tutorial

| tusers_manual

tetc

tgpt-query-result, txt

tng_invoke server,GTtempl

tninfg-user-env. csh

tninfg-user-env. sh

tserver.conf

tinclude

tgrpc. h

tgrpcError.h

tgrpclLocal.h

tgrpc_executable.h

tnet. h

+ng. h

+ngClientInternal.h

+ngCommon. h

+ngConfig.h

+ngConfigFile.h

+ngEx. h

tngExecutablelnternal.h

tngFunctionlnformation.h

tnglnternal.h

tngPlatform. h

+ngXML. h

+lib
+classad. jar (optional)
+condorAPI. jar (optional)
+condor|S. jar (optional)
tgtdinvokeserver. py
tgtdinvokeserverconfig.py
tioutils.py
tlibexpat.a
t+libngclient. a
t+libngcommon. a
+libngexecutable. a
t+libnggrpc. a
t+libngnet. a
tlibngutility.a
tng_invoke server.GT4. py
+ng_invoke server. jar (optional)
+ngisgt4. jar (optional)
tngutils. py
t+template. mk

t+template. sh

tuuid. py

+naregissl|S. jar (optional)
+naregiss is execute.sh (optional)

last update : $Date: 2008/09/12 08:27:42 $

3 Creating and setting up server-side programs

Creating a Ninf-G Executable

Setting up the Ninf-G Executable operating environment
Specifications for the configuration file used by Ninf-G Executable
(o]

(o]

e 3.1
e 3.2
e 3.3

3.3.1 Structure of the configuration file
3.3.2 Attributes and attribute values

3.1 Creating a Ninf-G Executable

e Describing the interface information with Ninf-G IDL
The following kinds of information are described with IDL.

o Module name (Ninf-G Executable identifier)
o Interface information
o Other information required by Ninf-G Executable

The following is a sample of IDL for implementing matrix multiplication. For detailed Ninf-G IDL
specifications, see chapter 6, "Ninf-G IDL Specifications”.

Ninf-G IDL sample

Module mmul;

Define dmmul (IN int n, IN double A[n][n], IN double B[n][n],
OUT double CLn][n])
. description ...”
Required "libxxx.0” /% specify library including this routine. %/
Calls ”"C” mmul(n,A,B,C); /* Use C calling convention. %/

The following is an example of a "callback", that can be described with Ninf-G IDL.

Ninf-G IDL sample (callback)

Module test;

Define callback test(IN int a, OUT int xb,
callback_func(IN int c[1], OUT int d[1]))
{

int executableStatus, clientStatus;
executableStatus = calc(a, b);
cal lback func(executableStatus, &clientStatus);
if (d ==1) {

/% client is alive %/
}

Note: You may find some compiler warnings when you compile Callback function, but they are
harmless. For example, following compiler warning is output by Solaris/vendor-cc.

"warning: old-style declaration or incorrect type for: callback test”

e Implementation of remote functions and remote methods

The required remote functions and remote methods (those called in the IDL) must be implemented (in
C or FORTRAN).

The source code (C) for the mmul() function used in the Ninf-G IDL sample shown above is presented
below.

Remote function (Remote method) sample

void mmul(int n, double % a, double % b, double % c)
{
double t;
int i, j, k;
for (i = 0; i < n; i++) {
for (j = 0; j < n; j++) {
t =0;
for (k = 0; k < n; k++){
t += ali *x n + k] * b[k * n + j];
}
cli *xn+ j] = t;
}
}
}

Note: Implementing cancel processing

When implementing processing for canceling a session, call grpc_is_canceled_np() in the Ninf-G
Executable Library API from within a remote function or remote method and check the return value.
Coding for performing session cancel processing if the return value is 1 is needed.

Example of cancel processing implementation

#include <grpc_executable.h)
void mmul(int n, double * a, double * b, double * ¢)

double t;
int i, j, k;

for (i =0; i < n; i++) {
for (j = 0; j < n; j++) {
t =0;
for (k = 0; k < n; k++){
t += ali * n + k] * b[k *x n + j1;

cli *xn+ j] = t;

}

if (grpc_is_canceled np() == 1) {
/% canceled %/
break;

e Using the Ninf-G generator to compile the IDL
% ${NG DIR}/bin/ng gen
Executing the above command generates the following.

o Ninf-G stub for executing a remote function (remote method)
o makefile for generating a Ninf-G Executable

o LDIF file (for saving the interface information)

o Local LDIF file (for saving the interface information)

e Creating the Ninf-G Executable

The makefile generated by the stub generator is used to execute the make command.
% make -f <module name)>.mak
An executable Ninf-G Executable is generated.

(The following tasks are not necessary if MDS is not being used. The Ninf-G Executable information
can be acquired without MDS by using the Ninf-G Executable path information that is contained in the
local LDIF file on the client side or in the Ninf-G Client configuration file.)

e Copying the LDIF file to the specified location

The LDIF file generated by the stub generator is copied to SGLOBUS _LOCATION /var/gridrpc.

% make -f <module name>.mak install
The content of the copied LDIF file is shown below.

Example LDIF file

dn: GridRPC-Funcname=mmul/dmmul, Mds-Software-deployment=GridRPC-Ninf-G,
objectClass: GlobusSoftware

objectClass: MdsSoftware

objectClass: GridRPCEntry

Mds-Software-deployment: GridRPC-Ninf-G

GridRPC-Funcname: mmul/dmmul

GridRPC-Module: mmul

GridRPC-Entry: dmmul

GridRPC-Path: /path/to/ stub dmmul

GridRPC-Stub:: ICA8Y2xhc3MgbmFtZTOibW11bCOkbW11bClgdmVyc2lvbj0iMS4wl iBud

Note: Copying the LDIF file to the prescribed location as above enables provision of Ninf-G
Executable information by MDS.

Ninf-G provides utility commands (described below) for managing the Ninf-G Executable information
supplied by MDS. Details on the commands can be found in chapter 8, "Utility Command Reference".

o Display the Ninf-G Executable information provided by the MDS of the host. (the
ng_dump_functions command)
o Delete the Ninf-G Executable information from MDS (the ng_delete_functions command)

3.2 Setting up the Ninf-G Executable operating environment

e Preparing the configuration file for use by Ninf-G Executable

Prepared according to the need for a configuration file for adjusting the location of the temporary files
generated during filename type argument processing and for the log output.

o System settings

Written in ${GLOBUS LOCATION}/var/gridrpc/ngstub.conf.
o User settings

Write ".ngstubrc” in the user's home directory.

If the system settings and user settings described above both have the same setting items, the user
settings have priority.

3.3 Specifications for the configuration file used by Ninf-G Executable

3.3.1 Structure of the configuration file

The Ninf-G Executable configuration file is a text file which contains the settings information that is required
for operation of Ninf-G Executable.

e This file is placed on the server on which Ninf-G Executable runs.

e The system attribute file is located in SGLOBUS_LOCATION /var/gridrpc/. The file name is
ngstub.conf.

e The user definition file (user settings file) is placed in the user's home directory. The file name is
.ngstubrc.

e [f the user wants to change a system attribute, the attribute to be changed is written in the user
definition file.

An example of entries in the Ninf-G Executable configuration file is shown below.

ffcomment

attribute value # comment
attribute value # comment
attribute value # comment

e Each line consists of an attribute and its value.

e One line defines one attribute.

e What follows after a pound sign (#) is interpreted as a comment.

e The attribute and attribute value must be separated by one or more spaces or by a TAB character.
e Multiple attributes cannot be written on one line.

e The attribute and attribute value must be written on the same line.

e One attribute definition cannot extend over more than one line.

e An attribute must have a defining attribute value. An attribute alone defines nothing.

e Attribute values of attributes for which multiple definitions are possible cannot overlap.

The following description produces an error.

AttributeValue
No delimiter between attribute and attribute value

Attribute Value Attribute Value
Multiple attributes on a line

Attribute
Value
attribute value extend across more than one line

Attribute
No attribute value

tmp dir /tmp

tmp_dir /var/tmp
Overlapping of the attribute values of an attribute
that can not have multiple definitions

3.3.2 Attributes and attribute values

The attributes and their attribute value definitions are listed below.

tmp_dir Directory
loglevel [0-5]
loglevel globusToolkit [0-5]

loglevel ninfgProtocol [0-5]

loglevel ninfglnternal
log filePath

log suffix

log nFiles

log maxFileSize

log overwriteDirectory
commLog enable

commLog filePath
commLog suffix

commLog nFiles

commLog maxFileSize

commLog overwriteDirectory

save stdout
save stderr
handling signals
continue_on_error

[0-5]

File name

Suffix

Number of files
Number of bytes
[true/false]
[true/false]
PathFile name

Suffix

FilesNumber of files
FileSizeNumber of bytes
[true/false]

File name

File name

Signals ...
[true/false]

The definable attributes and attribute values are listed below.

Attribute At‘::zili)lgte Default value |Multiple Explanation
The directory in which
. For temporary Not
tmp_dir fles /tmp bossible ‘]c)e'mporaly files are placed
irectory
Not
loglevel [0-5] 2 hossible Overall log level
. i Not Error generated by the
loglevel globusToolkit [0-5] 2 hossible |Globus Toolkit API
. Not Error concerning the Ninf-G
loglevel ninfgProtocol [0-5] 2 hossible [protocol
) Not .
loglevel ninfgInternal [0-5] 2 hossible Internal Ninf-G error
) Not
log filePath File name stderr bossible Log file name
. Sequence Not
log_suffix Suffix number bossible Log file suffix
) Not
log nFiles Number of files |1 bossible Number of log output files
oo o Not Maximum number of bytes for
log maxFileSize Number of bytes (1M /unlimited bossible [log file
. Not Over-write permission for log
log overwriteDirectory [true/false] False hossible |directory
Not Communication log output
. :
comml.og enable [true/false] False bossible |enabled/disabled
comml.og filePath File name stderr Not . Communication log file name
possible
comml.og suffix Suffix Sequence Not . Communication log file suffix
number possible
commLog nFiles Number of files |1 Not ' Number'of ﬁles for outputting
commLog NFIes possible |communication log
comml.og maxFileSize Number of bytes (1M /unlimited Not Maximum number of bytes for
possible |communication log file
Not Over-write communication log
commLog _overwriteDirectory |[true/false] False . directory enabled/disabled
possible .
Permitted

save stdout File name None I;:Ig;sible Save stdout to file

save stderr File name None I;:Ig;sible Save stderr to file
handling signals Eﬁi/ numbers gg?ggh/?lGINT I;Ig;sible Handling signals
continue_on_error [true/false] False I;:Ig;sible ggrrétrin(;lcecgfsmputation if an

The meanings of the log level values are described below.

[Value [Meaning | Explanation

0 |Off [Nothing is output.

|1 |Fatal |A fatal error is output.

12 |Error |A nonfatal error is output.

3 |Warning ~ |A warning error is output.

|4 |Information [Guidance or other such information is output.
15 |Debug |Debugging information is output.

e tmp_dir (temporary file directory)

The directory in which temporal files are placed for passing the filename type arguments to a remote
method.

When omitted, if TMPDIR environment variable is defined, it is used; otherwise, "/tmp" is used.
e loglevel* (log level)

The log level is specified for all log categories by loglevel and for each category individually by
loglevel_*.

When the log level for each category has not been specified, the log level for all categories is applied.
When omitted, the value of the NG_LOG_LEVEL environment variable is used.
If the NG_LOG_LEVEL environment variable is not set, 2 (Error) is used as the default value of
loglevel.
e log_filePath (log file name)
The name of the file to which the log is output is specified in the log file name.
The file name may include a path that includes a directory (e.g., "/home/myHome/var/logFile").
The file and directory name can include the following specifiers.
o n %tll
"%t" is replaced with the date as year, month and day, and the time in hours, minutes, seconds
and milliseconds ("yyyymmdd-hhmmss-MMM") (e.g., "/ home/myHome/var/logDir%t/logFile"
is replaced by "/home/myHome/var/logDir20030101-154801-123/logFile").
o "%h"
"%h" is replaced with the Ninf-G Executable hostname.

o Il%pll

"%p" is replaced with the process id of the Ninf-G Executable.
The Ninf-G Executable id number is added to the end of the file name.

When omitted, the log is output to standard error. If the log file name is omitted, the log suffix,
log nFiles, and log maxFileSize are ignored.

Note: When the Ninf-G Executable exits abnormally on startup, the executable id is not added and the
hostname and process id are added to the end of the file name.

log_suffix (log file suffix)

When a log file is specified, this specifies the suffix used when the log file is created.

If a suffix is specified, the generated file name will be from "filename[000].suffix" to

"filename [nnn].suffix". If omitted, the generated file name will be from "filename.[000]" to "filename.

[nnn]". The number of files minus 1 is "nnn."

The number of digits in "nnn" is the same as the number of digits in number of files minus 1. For
example, if the number of files is set to 100, then the number will range from "00" to "99."

log_nFiles (the number of files for log output)

This is the number of files created for log output.

0 indicates that an unlimited number of files can be output. A negative value results in an error.

If omitted, the value 1 is used.

log_maxFileSize (maximum number of bytes for the log file)

This is the maximum number of bytes for the log file. A unit indicator from among "kKmMgG" can be
appended to the numerical value to indicate Kilobytes (1024 bytes), Megabytes (1024 Kbytes), or
Gigabytes (1024 Mbytes).

If omitted, the value will be unlimited if the number of files is one, or 1 Mbyte if the number of files is
two or more.

log_overwriteDirectory (over-write permission for the directory in which the log files are generated)

This establishes overwrite permission for the directory. If the specified directory exists, this specifies
whether the creation of log files in that directory is enabled or disabled.

Operation in the case that the directory exists is shown below.

o true: If the file specified by log filePath exists in the directory, that file is overwritten.
o false: Error.

commLog_enable (whether communication log output is enabled or disabled)

This specifies whether the communication log output function is enabled or disabled. If 'true’ is
specified, the communication log is output. If not specified, the default value is false.

commLog_filePath (communication log file name)

The name of the file to which the communication log is output is specified in the log file name.
The file name may include a path that includes a directory (e.g., "/home/myHome/var/logFile").
The file and directory name can include the following specifiers.

o ll%tll

"%t" is replaced with the date as year, month and day, and the time in hours, minutes, seconds
and milliseconds ("yyyymmdd-hhmmss-MMM") (e.g., "/ home/myHome /var/logDir%t/logFile"
is replaced by "/home/myHome /var/logDir20030101-154801-123/logFile").

o n %hll
"%h" is replaced with the Ninf-G Executable hostname.

o n %p n
"%p" is replaced with the process id of the Ninf-G Executable.

The Ninf-G Executable id number is added to the end of the file name.

When omitted, the log is output to standard error. If the communication log file name is omitted, the
commlLog suffix, commLog nFiles, and commLog maxFileSize are ignored.

commLog_suffix (communication log file suffix)

When the communication log file is specified, this specifies the suffix used when the log file is created.
If a suffix is specified, the generated file name will be from "filename[000].suffix" to

"filename [nnn].suffix". If omitted, the generated file name will be from "filename.[000]" to "filename.

[nnn]". The number of files minus 1 is "nnn."

The number of digits in "nnn" is the same as the number of digits in the number of files minus 1. For
example, if the number of files is set to 100, then the number will range from "00" to "99."

commLog_nFiles (number of files for communication log output)

This is the number of files created for communication log output.

0 indicates an unlimited number of files can be output. A negative value results in an error.

If omitted, the value 1 is used.

commLog_maxFileSize (maximum number of bytes for the communication log file)

This specifies the maximum number of bytes for the communication log file. A unit indicator from
among "kKmMgG" can be appended to the numerical value to indicate Kilobytes (1024 bytes),
Megabytes (1024 Kbytes), or Gigabytes (1024 Mbytes).

If omitted, the value is either unlimited if the number of files is one or 1 Mbyte if the number of files is
two or more.

commLog_overwriteDirectory (over-write permission for the directory in which the communication log
files are generated)

This establishes overwrite permission for the directory. If the specified directory exists, this specifies
whether the creation of log files in that directory is enabled or disabled. Operation in the case that the
directory exists is shown below.

o true: If the file specified by log filePath exists in the directory, that file is overwritten.
o false: Error.

save_stdout (Save stdout to file)
This specifies the file name to save stdout.
If this attribute is set, stdout is saved to the specified file.

If the given file name for both save_stdout and save_stderr attribute is the same, output is shared to

one file in arbitrary order.

The output file is opend by append mode.

If omitted, stdout output is delivered to Ninf-G Client or discarded.
e save_stderr (Save stderr to file)

This specifies the file name to save stderr.

If this attribute is set, stderr is saved to the specified file.

If the given file name for both save stdout and save_stderr attribute is the same, output is shared to
one file in arbitrary order.

The output file is opend by append mode.
If omitted, stderr output is delivered to Ninf-G Client or discarded.
e handling signals
This attribute specifies signals which will be caught by Ninf-G Executable.

When the Ninf-G Executable catches the signal, Ninf-G cleans up all temporary files, and exits. This
clean up process is performed only for signals which are specified in this attribute.

The signals are specified by either signal name or signal number. Multiple signals can be specified by
space-delimited enumeration. The value "none" can be specified if no signals need to be caught.

If ommitted, SIGINT, SIGTERM and SIGHUP will be caught by Ninf-G Executable.
Note: This attribute is available for Ninf-G Version 4.2.0 or later.
e continue_on_error (continue computation if an error occurs)

This attribute is used to control behaviors of a Ninf-G Executable when a communication error occurs.
Such a communication includes explicit one (e.g. data transfer) as well as implicit one (e.g.
heartbeating).

If the value is set to 'false', which is the default value, the Ninf-G Executable immediately exits from
its execution when a communication error occurs. This enables Ninf-G Executables to release
computing resources immediately after the error. It is also useful to avoid Ninf-G Executables
remaining as zombie processes when the Ninf-G Client would die.

If the value is set to 'true', a Ninf-G Executable does not exit and continues to run until the callee
function or method will be completed. This configuration is valuable if the callee functions and methods
record results of the computation as files in the server machines. In this case, it may be worth to
continue the execution of the Ninf-G Executable even if a communication error occurs.

If omitted, the value 'false' is used.

Note: Even if the value is set to true, Ninf-G Executables may exit by catching signals from queueing
system like SGE or PBS, when the Ninf-G Client was killed by SIGHUP, SIGINT or SIGTERM signal.

Note: In order for Ninf-G Executables to detect an error immediately when the connection to the
Ninf-G Client was closed, Ninf-G Executables must be linked with the pthread flavor of the Globus
Toolkit libraries.

last update : $Date: 2008/03/28 06:23:30 §

4 Creating and setting up client-side programs

reating a Ninf-G Client

etting up the Ninf-G Client operating environment
inf-G Client configuration file specifications

4.3.1 Structure of the configuration file
4.3.2 Specifying the unit for time
4.3.3 Specifying the unit for number of bytes
4.3.4 INCLUDE section
4.3.5 CLIENT section
4.3.6 LOCAL LDIF section
4.3.7

4.3.8

4.3.9

4.3.1

4.3.1

ol @)

e o o
il e
O |IDO |[—

OOOO'—'OOOOOOOOOOOZ

FUNCTION INFO section

MDS SERVER section

INVOKE SERVER section

0 SERVER section

1 SERVER DEFAULT section
nvoke Server setup

4.1 Invoke Server GT4py

4.2 Invoke Server SSH

4.3 Invoke Server Condor

4.4 Invoke Server NAREGISS

.5 Running the Ninf-G Client program

.6 Creating application programs

endix

o a.l : How to use multiple user certificates
o a.2 : How to implement cascading RPC

3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
k

°
S

4

4.
4.
4.
4

=

QO > >

4.1 Creating a Ninf-G Client

e Creating an application program

Programs for executing remote functions and remote methods are written using the GridRPC API. The
creation of these programs is described in section 4.6.

e Setting the NG_COMPILER environment variable
(If the application program is written in C, there is no particular need for the NG_COMPILER settings.)

The NG_COMPILER environment variable is used to specify the compiler to be used to compile the
Ninf-G Client. The default compiler for ng_cc is cc. Required options can be specified in
NG_COMPILER in addition to the compiler name (path). When g++ is used, for example,

NG _COMPILER is set in the following way.

“g+t+ -Wall -¢’
e Setting the NG _LINKER environment variable
(If the application program is written in C, there is no particular need for the NG_LINKER settings.)

The NG_ LINKER environment variable is used to specify the linker to be used to link the Ninf-G
Client. The default linker for ng_cc is cc. Required options can be specified in NG_ LINKER in
addition to the linker name (path). When g++ is used, for example, NG_ LINKER is set in the following
way.

‘g++ -Wall -g’

e Creating a Ninf-G Client program

The application program created earlier is compiled using the ng cc command, thus creating a Ninf-G
Client program. An example of using the ng cc command is shown below.

% ${NG DIR}/bin/ng cc -g -0 test client test client.c

test client.c: Ninf-G Client source program
test client: Ninf-G Client executable program
(The results of compiling the source code.)

4.2 Setting up the Ninf-G Client operating environment

e Preparing the Ninf-G Client configuration file
This is the configuration file for settings concerning servers, clients, and the MDS.
(The configuration file specifications are described in section 4.3.)

e Preparing the files specified by the configuration file
Prepare the following files as specified in the configuration file.

o The configuration file specified by INCLUDE section

o The local LDIF file specified by LOCAL LDIF section

o The Ninf-G Executable executable file for which the staging is specified by FUNCTION INFO
section

Note: The local LDIF file is generated when the Ninf-G Executable is created on the server. When
used, the local LDIF file that is generated on the server that executes the remote functions or remote
methods must be copied to a place where it can be used from the Ninf-G Client.

Note: The environment variable LD LIBRARY PATH must be specified appropriately in the client
configuration file if the Ninf-G Executable file will be staged to a system whose software environment
is different from the build environment of the Ninf-G Executable.

4.3 Ninf-G Client configuration file specifications
4.3.1 Structure of the configuration file

The Ninf-G Client configuration file is a text file which contains settings information that is required for the
operation of a Ninf-G Client. It consists of seven sections, which are INCLUDE, CLIENT, LOCAL_LDIF,
FUNCTION_INFO, MDS_SERVER, INVOKE SERVER, SERVER, and SERVER DEFAULT.

e The INCLUDE section describes the files to be included.

e The CLIENT section describes information related to the Ninf-G Client.

e The LOCAL LDIF section describes information for the local LDIF file.

e The FUNCTION INFO section describes information on the remote function.

e The MDS SERVER section describes information concerning the MDS server.

e The INVOKE_SERVER section describes information concerning the Invoke Server.

e The SERVER section describes information concerning Ninf-G Executable.

e The SERVER DEFAULT section describes the default values for the SERVER section.

Examples of section and attribute descriptions are shown below.

ficomment

<sectiony

attribute value #f comment
attribute value #f comment

attribute value #f comment
<{/section)>

e The definitions of each section begin with <section > and end with </section >.

e <section> and </section> are called section tags, or simply tags.

e Anything following a pound sign (#) is regarded as a comment.

e The information described in each section includes attributes and attribute values.

e There cannot be multiple descriptions in a section that does not allow multiple definitions.

e In a section that does not allow multiple definitions, the key attribute cannot have redundant attribute
values.

e A section tag and an attribute cannot be written on the same line.

e At least one space or one tab character must separate an attribute and its attribute value.

e Multiple attributes cannot be defined on one line.

e An attribute and its attribute value must be written on one line.

e The backslash character (¥) cannot be used to extend a definition over multiple lines.

e Attributes which can have multiple definitions cannot have redundant attribute values.

e Upper case and lower case letters are distinguished, so the attribute name 'aaa', for example, cannot
be written as Aaa or AAA, etc. The attribute values 'aaa' and 'AAA' are also judged as different.

Examples of errors in description are shown below.

{sectionDAttribute Value
Section and attribute on the same line

AttributeValue # No delimiter between the attribute and attribute value

Attribute Value Attribute Value
Multiple attributes on the same line

Attribute #f Attribute and attribute value

Value #f extend across more than one line.
Attribute ¥

Value # Line continued with a backslash (¥)
Attribute # No attribute value

<{/section)>

<CLIENT> # Multiple definitions in a section where
. i

</CLIENT> il

<CLIENT> # multiple definitions are not allowed
. i

</CLIENT> il

<MDS_SERVER> # Attribute value redundancy within a section
hostname example.org # where multiple definitions are allowed

</MDS SERVER>
<MDS_SERVER>

hostname example.org #

</MDS SERVER> i

<LOCAL LDIF> #f Attribute value redundancy
filename example.ngdef #f for an attribute that allows
filename example.ngdef # multiple attribute values
</LOCAL LDIF>

<SERVER>

HostName example.com # Upper and lower case letters
hostname EXAMPLE.COM #f Upper and lower case letters

</SERVER>

4.3.2 Specifying the unit for time

When a time value is specified as an attribute value (for time-out or other such attributes), a unit of time can
be specified (e.g., 30 s, 30 sec or 30 seconds).

It is also possible to specify 'minute’ or ‘hour' as the time unit. Character strings such as 'se' and 'seco' are
also interpreted to mean second, but strings that are not contained in 'second’, such as 'set' will cause an
erTor.

4.3.3 Specifying the unit for number of bytes

When specifying the number of bytes as an attribute value for attributes such as log file size, units (*) such
as 1 K or 1 Kilo can be specified. Mega and Giga can also be specified as a unit for number of bytes.

Character strings such as Me, Meg, etc. are also interpreted to mean Mega, but strings that are not
contained in Mega, such as Ma cause an error.

(+) 1 K=1024 bytes, 1 M = 1024 Kbytes, 1 G = 1024 Mbytes

Each section of the configuration file is described below.
4.3.4 INCLUDE section

The INCLUDE section allows multiple definitions.

An example of an INCLUDE section description is shown below.

<INCLUDE>
filename file name
filename file name
</INCLUDE>

The attributes and attribute values of the INCLUDE section are shown below.

[Attribute |Attribute value [Default value [Multiple | Explanation
|filename |File name INone [Yes [File to be included

e filename (file to include)

The file name of the configuration file to be read is specified. The file to be read must be in the
configuration file format.

4.3.5 CLIENT section

The CLIENT section does not allow multiple definitions.

An example of a CLIENT section description is shown below.

<CLIENT>

hostname Host name

save sessioninfo Session information count
loglevel [0-5]

loglevel globusToolkit [0-5]

loglevel ninfgProtocol [0-5]

loglevel ninfglnternal [0-5]

loglevel ninfgGrpc [0-5]

log filePath File name

log suffix Suffix

log nFiles Number of files
log maxFileSize Number of bytes
log overwriteDirectory [true/false]
tmp dir Directory
refresh credential Seconds

invoke _server_log log name
fortran compatible [true/false]
handling signals Signals ...
listen_port Port number

listen_port_authonly Port number

listen_port GSI Port number
listen_port SSL Port number
tcp_nodelay [true/false]
</CLIENT>

The attributes and attribute values of the CLIENT section are shown below.

Attribute Attribute value | Default value |Multiple Explanation
globus_libc_ .
hostname Host name gethostname() No The host name of the client
save sessionlnfo Session 956 No The number of session information
— information count units to be saved
loglevel I[0-] 2 INo |Overall log level
loglevel globusToolkit [[0-5 2 INo |Globus Toolkit API error log level
loglevel ninfgProtocol [[0-5 2 INo INinf-G protocol error log level
loglevel ninfginternal [[0-] 2 INo INinf-G internal error log level
loglevel ninfgGrpc [[0-5] 2 INo |Grid RPC API error log level
log filePath [File name Istderr INo IThe log file name
llog_suffix |Suffix ISequence number |No IThe log file suffix
llog nFiles INumber of files |1 INo IThe number of files for log
log maxFileSize Number of bytes [1M/unlimited No ggxnnum number of bytes for log
T Over-write permission for log
log overwriteDirectory |[true/false] false No directory
dir For temporary /tmp No The directory in which temporary
files files are placed
refresh credential Seconds 0 No Refreshlng proxy credential
Ielresll creaential interval
invoke server log log name None No Invoke Server log filename
fortran_compatible [true/false] false No Fortran compatible mode
. . Signal SIGHUP SIGINT) .
nanding signals
handling signals hames,/numbers SIGTERM No Handling signals
The port number for listening
listen_port Port number 0 No requests for unencrypted
connections
The port number for listening
listen port authonly |Port number 0 No requests for connections by
authentication only
The port number for listening
listen port GSI Port number 0 No requests for connections
encrypted by GSI
The port number for listening
listen port SSL Port number 0 No requests for connections
encrypted by SSL.
ltcp_nodelay [[true/false] Ifalse INo ITCP_.NODELAY socket option

The log level can be specified by using the strings listed in the 'Meaning' column in the table below as well
as by using a number value.

The meanings of the log level values are described below.

[Value | Meaning | Explanation

[|Off [Nothing is output.

1 [Fatal |A fatal error is output.

2 |Error |A nonfatal error is output.

3 [Warning |A warning error is output.

|4 [Information [Guidance or other such information is output.
5 |Debug |Debugging information is output.

e hostname (client host name)

This host name is the host name of the client machine on which the Ninf-G Client is running. It is
used by the Ninf-G Executable when connecting to a Ninf-G Client.

The host name can be specified by an IP address such as 192.168.0.1 as well as by the ordinary host
name.

If omitted, the hostname returned by the Globus Toolkit API globus_libc_gethostname() function is
used. The hostname is equivalent to the output of the globus-hostname command.

The main purposes for which this is used are described below.

o When the Ninf-G Executable uses the DNS (Domain Name System), but for some reason the IP
address cannot be resolved from the host name of the client machine on which the Ninf-G Client
1S running.

o The host name set for the client machine on which the Ninf-G Client is running and the host
name derived in reverse from the IP address using DNS are different.

Note: If the hostname attribute is set, the environment variable GLOBUS HOSTNAME is overwritten
by its value.

Note: The hostname attribute may not be set appropriately when globus_libc_gethostname() is called
before grpc_initialize().

e save_sessionInfo (number of session information units to save)
This is the number of session information units stored internally by Ninf-G.

If the number defined here is exceeded, the session entries are discarded beginning with the oldest
first.

o If the value 0 is specified, the information is not saved.
o If a value of 1 or greater is specified, that number of session information units is saved.
o If a negative value is specified, there is no automatic discarding of information.

If omitted, the value 256 is used.

e loglevel* (log level)

The log level is specified for all log categories by log level and for each category individually by
loglevel *.

When the log level for each category has not been specified, the log level for all categories is applied.
When omitted, the value of the NG_LOG_LEVEL environment variable is used.

If the NG_LOG_LEVEL environment variable is not set, 2 (Error) is used as the default value of
loglevel.

e log_filePath (log file name)

The name of the file to which the log is output is specified in the log file name.
The file name may include a path that includes a directory (e.g., "/home/myHome/var/logFile").
The file and directory name can include the following specifiers.
o "kt"
"%t" is replaced with the date as year, month and day, and the time in hours, minutes, seconds
and milliseconds ("yyyymmdd-hhmmss-MMM") (e.g., "/ home/myHome/var/logDir%t/logFile"
is replaced by "/home/myHome/var/logDir20030101-154801-123/logFile").
o "%h"
"%h" is replaced with the Ninf-G Client hostname.
o "%p"
"%p" is replaced with the process id of the Ninf-G Client.

When omitted, the log is output to standard error. If the log file name is omitted, the log suffix,
log nFiles, and log maxFileSize are ignored.

e log_suffix (log file suffix)
When a log file is specified, this specifies the suffix used when the log file is created.
If a suffix is specified, the generated file name will be from "filename[000].suffix" to
"filename [nnn].suffix". If omitted, the generated file name will be from "filename.[000]" to "filename.

[nnn]". The number of files minus 1 is "nnn."

The number of digits in "nnn" is the same as the number of digits in number of files minus 1. For
example, if the number of files is set to 100, then the number will range from "00" to "99."

e log_nFiles (the number of files for log output)
This is the number of files created for log output.
0 indicates that an unlimited number of files can be output. A negative value results in an error.
If omitted, the value 1 is used.
e log_maxFileSize (maximum number of bytes for the log file)
This is the maximum number of bytes for the log file.

If omitted, the value will be unlimited if the number of files is one, or 1Mbyte if the number of files is
two or more.

e log overwriteDirectory (over-write permission for the directory)
This establishes overwrite permission for the directory. If the specified directory exists, this specifies
whether the creation of log files in that directory is enabled or disabled. Operation in the case that the
directory exists is shown below.
o true: No error results, even if the directory specified by log filePath exists. If files exist in the
directory, those file may be overwritten.
o false: An error results if the directory specified by log filePath exists.
e tmp_dir (directory for temporal files)

The directory in which temporal files are placed.

When omitted, TMPDIR environment variable is used if it is defined. Otherwise, "/tmp" is used.

e refresh_credential (Refreshing the proxy credential interval)
This specifies the interval for refreshing the proxy credential.
If the value 0 is specified, Ninf-G Client will not refresh the proxy credential. If a value of 1 or greater
is specified, Ninf-G Client will refresh the proxy credential and send it to Job Manager. If a negative
value is specified, an error results.
If omitted, the value 0 is used.
Note: refreshing the proxy credential on a client program feature is supported only in the pthread
version. It's OK to build a Ninf-G Executable with both a pthread version and a non-thread version of
Globus Toolkit flavor.
Note: Ninf-G Java Client does not support this feature.

e invoke_server_log (Invoke Server log filename)

This specifies the Invoke Server log file name. If this attribute is specified, the suffix for Invoke Server
name and Invoke Server number is added to the log file name, and then output.

If omitted, no values are used.
Note: This attribute appeared in Ninf-G Version 4.0.0.
e fortran_compatible
This specifies a mode of argument passing.
By default, a scalar argument for remote functions and remote methods is passed by an immediate
value. If this attribute is set to true, a scalar argument is passed by a pointer to the value. Otherwise,
a scalar argument is passed as an immediate value.
If omitted, the default value 'false' is used.
Note: This attribute has been added in Ninf-G Version 4.1.0.
Note: Ninf-G Java Client does not support this feature.
e handling signals

This attribute specifies signals which will be caught by Ninf-G Client.

When the Ninf-G Client catches the signal, Ninf-G cleans up all temporary files, cancels all jobs, and
exits. This clean up process is performed only for signals which are specified in this attribute.

The signals are specified by either signal name or signal number. Multiple signals can be specified by
space -delimited enumeration. The value "none" can be specified if no signals need to be caught.

If ommitted, SIGINT, SIGTERM and SIGHUP will be caught by Ninf-G Client.
Note: This attribute is available for Ninf-G Version 4.2.0 or later.
Note: Ninf-G Java Client does not support this feature.

e listen_port

This specifies the client port number for listening requests for unencrypted connections. If the 0 value
is specified, an arbitrary port number is used.

If omitted, the default value '0" is used.
Note: This attribute has been added in Ninf-G Version 4.2.0.
e listen port_authonly

This specifies the client port number for listening requests for connections by authentication only. If
the 0 value is specified, an arbitrary port number is used.

If omitted, the default value '0" is used.
Note: This attribute has been added in Ninf-G Version 4.2.0.
e listen port GSI

This specifies the client port number for listening requests for connections encrypted by GSI. If the 0
value is specified, an arbitrary port number is used.

If omitted, the default value '0' is used.
Note: This attribute has been added in Ninf-G Version 4.2.0.
e listen port SSL

This specifies the client port number for listening requests for connections encrypted by SSL. If the 0
value is specified, an arbitrary port number is used.

If omitted, the default value '0' is used.
Note: This attribute has been added in Ninf-G Version 4.2.0.
e tcp_nodelay (TCP_NODELAY socket option)

This specifies whether or not to set TCP_NODELAY for both ends of connections between a Ninf-G
Client and Ninf-G Executables.

If omitted, "false" is used.
Note: This option is available for Ninf-G Version 4.2.3 or later.
Note: The following is a report from users.

If the size of transferred arguments or results is less than 1.5KB, performance of data transfer is
improved by setting tcp_nodelay to true.

4.3.6 LOCAL LDIF section

The LOCAL_LDIF section allows multiple definitions. The LOCAL_LDIF section may be omitted.

An example of a LOCAL_LDIF section description is shown below.

<LOCAL LDIF>
filename file name
filename file name
</LOCAL LDIF>

The attributes and attribute values of the LOCAL_LDIF section are shown below.

|Attribute |Attribute value |Defau1t value |Mu1tiple | Explanation
|ﬁlename |Fﬂe name |None |Yes |Loca1 LDIF filename

e filename (local LDIF file)

This specifies the local LDIF file that contains the Ninf-G Executable information. One file name
cannot have multiple descriptions. The local LDIF file is generated by the ng gen command.

4.3.7 FUNCTION_INFO section

The FUNCTION INFO section allows multiple definitions. The FUNCTION INFO section may be omitted.

An example of a FUNCTION INFO section description is shown below.

<FUNCTION_INFO>

hostname Host name
funcname Function name
path Path

staging [true/false]
backend Backend

session_timeout Seconds
</FUNCTION_INFO>

The attributes and attribute values of the FUNCTION INFO section are shown below.

Attribute | At\};ggte | Dveafﬁluelt Multiple Explanation
|hostname |Host name [None INo IServer machine host name
|funcname |Function name |None INo [The function name of the remote function
@ [Path [None INo [The path to the Ninf-G Executable
stagin ([true /false] |false INo [Staging enabled or disabled
backend Backend normal No ialcalfg(l:% esgftware by which Ninf-G Executable
lsession timeout |Seconds |0 |N0 |RPC execution timeout

e hostname (host name of the server machine)
This specifies the host name of the server machine.
It cannot be omitted.
e funcname (function name of the remote function)
This specifies the function name of the remote function.
It cannot be omitted.
e path (path to Ninf-G Executable)

This specifies the path to the Ninf-G Executable. If staging is set to true, the path on the client
machine is specified. If staging is set to false, the path on the server machine is specified.

It cannot be omitted.
e staging
This specifies whether or not staging (*) is to be executed. If 'true' is specified, staging is executed.

If omitted, the value is taken to be 'false.'

(*) A function for starting up the Ninf-G Executable located on the client machine after transfer to the
server machine.

Note: Invoke Server GT4py requires some steps in advance. Details are described in 4.4.1.5 Using
staging function on Invoke Server GT4py.

backend

This specifies backend software by which the Ninf-G Executable is launched. Backend should be
either normal, mpi or blacs. If the backend is normal, Ninf-G Executable is launched directly by
GRAM. If the backend is mpi, GRAM will use the mpirun command to launch the Ninf-G Executable as
an MPI processes. blacs is used when Ninf-G Executable should be launched by blacs.

Backend should be specified if neither MDS nor local LDIF is used for execution, and users intend to
use mpi or blacs for launching the Ninf-G Executable.

If omitted, the value is taken to be 'normal.’
session _timeout

This specifies the RPC execution timeout value. If the RPC execution time exceeds the timeout value,
then the outstanding RPC will be terminated and returned as a timeout error. The handle which was
associated with the RPC becomes inoperative and will not be able to be used for any RPCs.

Measurement of the execution time of an RPC is started when a session invocation API such as
grpc_call() is called. The execution time of an RPC involves not only the time for computation of the
remote library but also any other unexpected time. For example, the timeout error may occur when the
job will not be invoked due to an unknown reason.

The session_timeout attribute can be used for avoiding unexpected freezes of the Ninf-G Client
caused by rare-case accidents on Ninf-G Executables.

If 0 is specified, then the timeout feature is disabled. The default value of session_timeout is 0.

Note: The session_timeout feature is supported only for pthreads flavors.

4.3.8 MDS SERVER section

The MDS_SERVER section allows multiple definitions. The MDS_SERVER section can be omitted.

When an MDS request for information is made, the request is issued to the MDS server specified by the
MDS_SERVER section defined in the configuration file. The search is executed repeatedly in order,

beginning with the first definition, until the information has been found or the last MDS SERVER defined in

the section has been searched for information.

An example of MDS SERVER section description is shown below.

<MDS_SERVER>

hostname Host name
tag Tag name
type Type

port Port number
protocol protocol name
path service path
subject "Subject”

VO _name VONAME
client timeout Seconds
server_timeout Seconds
</MDS_SERVER>

The attributes and attribute values of the MDS_SERVER section are shown below.

| Attribute [Attribute value | Default value [Multiple | Explanation
|hostname [Host name [None INo IMDS server host name
|tag [Tag name [None [No IMDS Server tag name
|tvpe [Type [MDS2 [No [MDS type

[port [Port number 2135 INo [MDS server port number
[protocol [protocol name |https [No [MDS protocol

|path [service path |default service path [No IMDS path

lsubject |Subject [None [No [MDS subject

lvo name [VONAME [Local INo |GIIS vo name

|client timeout [Seconds 0 INo [The client time-out time
|server timeout [Seconds 0 INo [The server time-out time

e hostname (the host name of the MDS server)
This specifies the host name of the MDS server.
The MDS server host name cannot be omitted.

e tag (MDS Server tag name)

This specifies the tag name of the MDS Server setting. This tag name is used to specify in a
<SERVER> section.

"tag" for <MDS_SERVER> section has been introduced to allow to define multiple <MDS SERVER>
sections for the same MDS server. Any tag name in a configuration file must be unique.

If omitted, no values are used.

Note: This attribute appeared in Ninf-G Version 4.0.0.
e type (MDS type)

This specifies the type of MDS.

MDS has 2 types.

o MDS2 (Pre-WS MDS)
o MDS4 (Globus Toolkit Information Services)

If omitted, MDS2 is used.

Note: This attribute appeared in Ninf-G Version 4.0.0.
e port (the port number of the MDS server)

This specifies the port number of the MDS server.

If omitted, the default port (2135 on MDS2, 8443 on MDS4) is used.
e protocol (MDS protocol)

This specifies the protocol part of the MDS4 URL. (http or https)

If omitted, https is used.

Note: This attribute appeared in Ninf-G Version 4.0.0.

e path (MDS path)
This specifies the path part of the MDS4 URL.

If omitted, the default service URL path (shown below) is used. /wsrf/services/org/apgrid/ninf/ng4
/grpcinfo/GrpcInfolndexService

Note: This attribute appeared in Ninf-G Version 4.0.0.
e subject (MDS subject)

This specifies the subject used for authentication of MDS4 access to Web Service containers. This is
useful for Web Service containers invoked by unprivileged users.

In order to include space characters, use double quote characters ("). Example: "/C=JP/O=EXAMPLE
/OU=GRID/CN=Example of Subject".

If omitted, this value is not used.
e vo_name (the GIIS vo name)
This specifies the vo name of GIIS.
If omitted, "local” is used.
e client_timeout (client time-out value)
The client time -out value specifies the time-out time for connection between client and server.
If the value 0 is specified, there is no time-out in waiting for a response.
If omitted, the default value 0 is used.
e server_timeout (the server time-out value)
The server time-out value specifies the time-out time for connection between servers.
If the value 0 is specified, there is no time-out in waiting for a response.

If omitted, the default value 0 is used.
4.3.9 INVOKE SERVER section

The INVOKE SERVER section allows multiple definitions. The INVOKE SERVER section can be omitted.
Note: This section appeared in Ninf-G Version 4.0.0.
Note: The Invoke Server feature is supported only for pthreads flavors.

An example of an INVOKE_SERVER section description is shown below.

<INVOKE_SERVER>

type type name
path path name
max_jobs Number of jobs

log filePath path of logfile
status polling Seconds

option "option string”
</INVOKE SERVER>

The attributes and attribute values of the INVOKE SERVER section are shown below.

| Attribute |Attribute value| Default value [Multiple | Explanation

|tvpe type name [None [No [Invoke Server type

path path name ilg\l_%\%llj e/_zlélr/v er. [type] No Invoke Server executable file path
Imax jobs [Number of jobs [0 [No [max jobs for one Invoke Server
[log filePath [path [None [No [log file path

|status polling |Seconds 0 [No [Polling interval

loption |"option string" [None [Yes [option

e type (Invoke Server type)
This specifies the type of Invoke Server.
The default Invoke Server executable file path is $NG_DIR/bin/ng_invoke_server.[type]
The following four types are available.
o GT4py : Invoke Server for GT4 (WS GRAM) implemented in Python.
o SSH : Invoke Server for SSH implemented in C.
o Condor : Invoke Server for Condor implemented in Java.
o NAREGISS : Invoke Server for NAREGI Super Scheduler implemented in Java.
The following three types are available, but unsupported.
o GT2c : Invoke Server for GT2 (Pre-WS GRAM) implemented in C.
o GT4java : Invoke Server for GT4 (WS GRAM) implemented in Java.
o UNICORE : Invoke Server for UNICORE implemented in Java.

Each Invoke Servers have respective usages and requisites. See 4.4 Invoke Server setup for detail.

This cannot be omitted.
Note: The Invoke Server feature is supported only for pthreads flavors.
e path (Invoke Server executable file path)
This specifies the executable file of Invoke Server.
The default executable file path is "$NG_DIR/bin/ng_invoke_server.[type]".
If omitted, the default executable file path are used.
e max_jobs (max jobs for one Invoke Server)
This specifies the maximum number of jobs for one Invoke Server. If the number of jobs handled
reaches the value of max jobs, the next Invoke Server is launched and subsequent jobs are handled by
the next Invoke Server.
If 0 was specified, all job are handled by one Invoke Server.
If omitted, 0 is used.
e log_filePath (log file path)
This specifies the log file name for Invoke Server. Nothing are added as suffix of file name.
If omitted, <CLIENT> section invoke_server_log setting is used.

e status_polling (Polling interval)

This specifies the status polling interval of the Invoke Server. If the Invoke Server implementation uses
polling in getting job status, this polling interval is used.

If omitted, 0 is used.
e option (Invoke Server option)

This specifies the options to pass to Invoke Server, when a function handle is created. Each Invoke
Server implementation can define this option for any reason.

If the value is enclosed by double-quote characters ("), the value can include the space character.

This attribute can specify multiple times. If omitted, the Invoke Server option is not used.
4.3.10 SERVER section

The SERVER section allows multiple definitions.

When the SERVER section contains multiple definitions, the following API checks to see if remote function
information is registered in the first-defined SERVER. If it is, that server is used. If it is not, a check is made
for registered remote function information in the second SERVER. This is repeated until remote function
information is found.

grpc_function_handle_default()
grpc_function_handle_array_default_np()
grpc_object_handle_default_np()
grpc_object_handle_array_default_np()

An example of a SERVER section description is shown below.

<SERVER>

hostname Host name

hostname Host name host name host name ...
tag Tag name

port Port number

mds hostname Host name

mds tag Tag name

invoke server Type

invoke server option
mpi_runNoOfCPUs

gass _scheme

crypt

protocol

force_ xdr

jobmanager

subject
client_hostname

job startTimeout
job stopTimeout
job_maxTime
job_maxWal ITime
job maxCpuTime
job queue

job project

job hostCount
job minMemory
job _maxMemory
job rslExtensions

heartbeat
heartbeat timeoutCount

"option string”

[function name=]number of CPUs
[http/https]
[false/authonly/SSL/GSI]
[XML/binary]

[true/false]

JOBMANAGER

"Subject”

Host name

Seconds

Seconds

Minutes

Minutes

Minutes

Queue name
Project name
Number of nodes
Size

Size

"extension string”

Seconds
Times

heartbeat timeoutCountOnTransfer Times

redirect_outerr
tcp connect retryCount

[true/false]
Counts

tcp_connect retryBaselnterval Seconds
tcp connect retrylncreaseRatio Ratio

tcp_connect_retryRandom
argument transfer
compress

compress threshold
argument blockSize
workDirectory
coreDumpSize

commLog enable

commLog filePath

commLog suffix

commLog nFiles

commLog maxFileSize
commLog overwriteDirectory

debug

debug display
debug terminal
debug debugger
debug busyLoop

environment
environment
</SERVER>

[true/false]
[wait/nowait/copy]
[raw/zlib]

Number of bytes
Number of bytes
Directory name
Size

[true/false]
File name
Suffix

Number of files
Number of bytes
[true/false]

[true/false]
DISPLAY

Command path name
Command path name
[true/false]

Variable name
Variable name =

value

The attributes and attribute values of the SERVER section are shown below.

Attribute At‘l::illc;gte Default value [Multiple Explanation
hostname [Host name [None [Yes [Server machine host name
ltag Tag name [None INo Server tag name

The server port number
port Port number 2119 No on which the Globus
gatekeeper is listening
Imds hostname [Host name [None INo IMDS server host name
mds tag [Tag name [None INo IMDS tag name
|invoke server |type |None |No |Invoke Server type
linvoke server option loption string [None Yes [nvoke Server option
. Function name, The number of CPUs
mpi runNoOfCPUs Number of CPUs None Yes used by MPI function
lgass_scheme [http/https] |http INo IGASS server scheme
Method of authentication
crypt [felse/authonly false No and encryption for
/SSL/GSI| Y PL
communication paths
[protocol [XML/binary] [XML INo |Specifies the protocol.
lforce xdr [true/false] |false INo [Makes XDR compulsory.
. The job manager used on
jobmanager JOBMANAGER |None No he server machine
. . Subject of resource
subject Subject None No manager contact
hostname of
client hostname Host name CLIENT No Client machine host name
section
job_startTimeout Seconds 0 No The time-out at job
startup
. . The time-out for when
job_stopTimeout Seconds -1 No the job stops

job_maxTime Minutes None No gifca?ﬁngﬁ eJOb
iob maxWallTime Minutes None No gﬁj&%g&%’oek -
job maxCpuTime Minutes None No g?fcﬁ}c?ﬁng&ﬁ?ne
liob queue lqueue name INone INo |A remote queue name
liob project [project name INone INo |A remote project name
job_hostCount Number of nodes [None No Is\IﬁrlrgbslrugfeI;g;i es (for
) . . Minimum amount of
ob minMemory Size None No memory, in Megabytes
) . Maximum amount of
ob maxMemory Size None No memory, in Megabytes
liob rslExtensions lextension string |None INo IRSL extensions
lheartbeat ISeconds 160 INo [The heart-beat interval
heartbeat timeoutCount Times 5 No ;l;rlllleéshealt—beat time -out
heartbeat timeoutCountOnTransfer [Times 5 No ggzshgﬁ;:;ifme -out
redirect outerr [true/false] true No Ir\élgifr—eCétExecutable output
The maximum number of
tcp connect retryCount Counts 4 No retries for a TCP
connection
tcp connect retryBaselnterval Seconds 1 No t’l;}l;e ﬁk;gier;?rt;rval time for
The increase ratio for
tcp _connect retrylncreaseRatio Ratio 2.0 No icnaggggflgfnghge{[n\;gggum
retries
A flag that specifies
tcp_connect_retryRandom [true/false] true No ;Zhsgzgrotfioia?groglevame
interval time
Returns the called
function for an
[wait/nowait . asynchronous function
argument transfer /copy] wait No call Timing (Wait or do
not wait for completion of
argument transfer.)
lcompress |[raw/ zlib] |raw INo ICompression method
compress threshold Number of bytes |64KBytes No Eg;%sr}ézgofr performing
argument blockSize Number of bytes |[16KBytes No gﬁsggr%% S;rzgeu?rfents
The path to . .
workDirectory Directory name |the Ninf-G No El?ff—\grlgégc &;&C;OW for
Executable
core DumpSize Size Undefined No g;)nrfe g}ulrﬂnﬁeilj‘fag(lg

‘Whether the
comml.og enable [true/false] false No communication log output
is enabled or disabled
commlog filePath File name stderr No Communication log file
name
commLog suffix Suffix Sequence No The communication log
number file suffix
commLog nFiles Number of files |1 No The numbe; of files for
communication log output
Maximum number of bytes
comml.og maxFileSize Number of bytes |IM/unlimited [No for the communication log
file
Overwrite permission for
comml.og overwriteDirectory [true/false] false No the communication log
directory
Whether the debugging
debug [true/false] felse No function is enabled or not
debug_display DISPLAY Egg;{)olgmem No Debugging display
debug terminal Command path Enyironment No Path'to the debugging
name variable terminal emulator
Command path Environment
debug debugger ame variable No Debugger path
Wait for attach from
debug busyLoop [true/false] false No debugger or not
lenvironment (Character string |None Yes [Environment variable

e hostname (the host name of the server machine)

This specifies the host name of the server machine.

Multiple hostname attributes can be defined.

It is possible for multiple host names to be defined on one line.

This value cannot be omitted.

tag (Server tag name)

This specifies the tag name of a <SERVER> section.

"tag" for <SERVER> section has been introduced to allow to define multiple <SERVER> sections for
the same server. APIs which create function handles or object handles accept tag name as well as
hostname as the host name of the server. Any tag name in a configuration file must be unique.

The tag name can include neither '/' nor ":' character since those characters are reserved characters
of Resource Manager Contact.

If omitted, no values are used.

Note: This attribute is available for Ninf-G Version 4.0.0 or later.

port

This specifies the port number on which the Globus gatekeeper is listening.
If omitted, the default '2119" value is used.

e mds_hostname (the host name of the MDS server)

This is the MDS queried first when querying for information concerning the MPI of the server machine
and remote function information. This specifies the host name of the server.

If the mds_hostname attribute is specified, the mds_tag attribute cannot be specified.
If omitted, no values are used.
mds_tag (MDS tag name)

This specifies the MDS tag name for the MDS server setting. If the mds _tag attribute is specified, the
mds_hostname attribute cannot be specified.

If omitted, no values are used.

Note: This attribute appeared in Ninf-G Version 4.0.0.

invoke_server (Invoke Server type)

This specifies the Invoke Server type to use for the server.

The attribute arguments are described in the <INVOKE _SERVER> section type attribute.
If omitted, the Invoke Server is not used.

Note: This attribute appeared in Ninf-G Version 4.0.0.

Note: The Invoke Server feature is supported only for pthreads flavors.
invoke_server_option (Invoke Server option)

This specifies the options to pass to Invoke Server, when a function handle is created. Each Invoke
Server implementation can define this option for any reason.

If the value is enclosed by double-quote characters ("), the value can include the space character.
This attribute can be specified multiple times. If omitted, the Invoke Server option is not used.
Note: This attribute appeared in Ninf-G Version 4.0.0.

mpi_runNoOfCPUs (number of MPI CPUs)

This specifies the number of CPUs to be used when MPI is used on a server machine.

The number of CPUs for executing particular functions can be specified with the format "function name
= number of CPUs."

If the function name is omitted, the default value for the number of CPUs for MPI on that server
machine is used.

gass_scheme (GASS server scheme)

This specifies the scheme for the GASS server.

If omitted, http is used.

crypt (method of authentication and encryption for communication paths)

This specifies the method of authentication and encryption for communication paths. Choices are no
authentication and no encryption (false), authentication only (authonly), authentication and encryption

using SSL (SSL), and authentication and encryption using GSI (GSI).

If omitted, the default value 'false' is used.

Note: Encryption of transferred data is implemented using GSI, hence proxy certificate must be
delegated to Ninf-G Executable. Therefore, encryption is basically available only for Pre-WS GRAM
and WS GRAM.

Note: 'authonly' is available in Ninf-G Version 4.2.0 or later.

protocol (protocol specification)

This specifies the protocol to be used between a Ninf-G Client and Ninf-G Executable. Either XML
or binary can be specified.

If omitted, XML is used.
force_xdr (whether or not to force XDR)

This specifies whether or not to force the use of XDR in the protocol between a Ninf-G Client and
Ninf-G Executable.

If XML is used as the protocol, this setting has no effect. The main purpose of using this is for
measurement of processing speed when XDR is used.

If omitted, the default value 'false' is used.

jobmanager (the job manager to be used on the server machine)

This specifies the job manager to be used on the server machine. Any of jobmanager-fork,
jobmanager-pbs, jobmanager-gdr, or jobmanager-Isf can be specified, depending on the server machine
settings.

If omitted, the default job manager on the server machine is used.

subject (subject part of GRAM resource manager contact)

This specifies the subject part of the Globus Toolkit GRAM resource manager contact. The subject is
usually used for the Globus personal gatekeeper.

If the value is enclosed by double-quote characters ("), the value can include the space character, as
in "/C=JP/O=EXAMPLE/OU=GRID/CN=Example of Subject".

If omitted, no value is used.

client_hostname (the host name of the client machine)

This specifies the host name of the client machine.

The Ninf-G Executable on the server will connect back to the client machine which is specified by
this attribute.

The attribute enables each server to use different names of the client machine according to the
network configuration of the client and the servers.

If omitted, hostname of CLIENT section is used.

Note: This attribute is not available if you use PreWS GRAM and enable redirect_outerr or executable
staging.

job_startTimeout (the job startup time-out)
This specifies the time-out time for job startup.
When grpc_call(), grpc_invoke_np() or another such RPC is executed, if the job has not started after

this time has passed since the job start request was issued, a time-out occurs; each API ends and
returns an error.

If the 0 value is specified, there is no time-out and the process waits until the job starts. If a value of
1 or greater is specified, the process waits that amount of time for the job to start. If a negative value
is specified, an error results.
If omitted, the 0 value is used.

e job_stopTimeout (the job stop time-out time)
When grpc_function_handle_destruct(), grpc_object_handle_destruct() or other such job stop request is
issued by the AP], if the job has not stopped after this time elapses, a time-out occurs; each API ends
and returns an error.
If a negative value is specified, there is no time-out and the process waits until the job stops. If the 0
value is specified, the process doesn't wait for the job to stop. If a value of 1 or greater is specified,
the process waits that amount of time for the job to stop.
If omitted, the -1 value is used.
Note: This attribute changed in Ninf-G Version 2.4.0.
In Ninf-G Version 2.3.0 or former:
If the 0 value is specified, there is no time-out and the process waits until the job stops. If a negative
value is specified, an error results.

e job_maxTime (the maximum job execution time)

This specifies the maximum job execution time. The value specified is used to pass the Globus GRAM
RSL attribute "maxTime." The units are in minutes.

If omitted, no values are used.
e job_maxWallTime (the maximum job execution wall clock time)

This specifies the maximum job execution wall clock time. The value specified is used to pass the
Globus GRAM RSL attribute "maxWallTime." The units are in minutes.

If omitted, no values are used.
e job_maxCpuTime (the maximum job execution cpu time)

This specifies the maximum job execution cpu time. The value specified is used to pass the Globus
GRAM RSL attribute "maxCpuTime." The units are in minutes.

If omitted, no values are used.
e job_queue (queue name)

Target the GRAM job to a queue (class) name as defined by the scheduler at the defined (remote)
resource.

If omitted, no values are used.
e job_project (project name)

Target the GRAM job to be allocated to a project account as defined by the scheduler at the defined
(remote) resource.

If omitted, no values are used.
e job_hostCount (number of nodes)

Defines the number of nodes (hosts) to distribute the Ninf-G Executable processes created by handle
array init API across. This attribute only applies to clusters of SMP computers.

If omitted, no values are used.
Note: There is a bug in jobmanager-pbs, so jobmanager-pbs doesn't work with this attribute variable.
e job_minMemory (minimum amount of memory)

Specify the minimum amount of memory required for a Ninf-G Executable process. Units are in
Megabytes.

If omitted, no values are used.
e job_maxMemory (maximum amount of memory)

Specify the maximum amount of memory required for a Ninf-G Executable process. Units are in
Megabytes.

If omitted, no values are used.
e job_rslExtensions (RSL extensions)

This specifies the WS GRAM RSL extensions. This attribute is available for Invoke Server GT4py and
for PreWS GRAM.

WS GRAM RSL extensions is currently used only to specify client-specific data which the client
wishes to associate with the job it is controlling.

WS GRAM RSL extensions can be processed by user defined WS GRAM jobmanager scripts. For
Globus Toolkit 4.0.1, calling $description->extensions() subroutine in the file
$GLOBUS_LOCATION/lib/perl/Globus/GRAM/JobManager/fork.pm implements accessibility to the
given RSL extensions. (See Globus Toolkit WS GRAM Users Guide for details.)

In addition, this attribute is also used to specify user defined PreWS GRAM attributes. Attribute
values will just be added to the end of the RSL.

If the attribute value is enclosed by double-quote characters ("), the value can include the space and
other characters.

In the string enclosed by double -quote characters, some characters are considered as escape
characters.

o A backslash double-quote (¥") denotes a double-quote character (") in the value.
o A backslash backslash (¥¥) denotes backslash character (¥) in the value.

o A backslash return denotes that, the attribute value continues to the next line.

o A backslash followed by the other characters causes an error.

Here is an example valid usage.

job rslExtensions " ¥
<myAttribute> ¥
¥ test¥¥ value¥” ¥
</myAttribute)”

This attribute can be specified multiple times. If omitted, job rslExtensions is not used.
Note: This attribute is available for Ninf-G Version 4.0.0 or later.
e heartbeat (the heart-beat interval)

This specifies the interval for sending the heart-beat from Ninf-G Executable to Ninf-G Client.

If the value 0 is specified, the heart-beat is not sent. If a value of 1 or greater is specified, the
heartbeat is sent at that interval. If a negative value is specified, an error results.

If omitted, the value 60 is used.
Note: The heartbeat checking on a client program feature is supported only in the pthread version.
The heartbeat sending on a Ninf-G Executable feature is supported by both the pthread version and

the non-thread version of Globus Toolkit flavor.

Note: If you are debugging a Ninf-G Executable or client, We suggest that you disable the heartbeat
feature. This is to suppress periodic heartbeat overhead and unexpected heartbeat timeouts.

heartbeat_timeoutCount (the heart-beat time-out time)
This specifies the number of times until a time-out occurs when the heart-beat is not being sent.

When the heartbeat has not been sent for a time equal to the heart-beat interval times the heart-beat
time-out value, the Ninf-G Client takes it as meaning that the Ninf-G Executable is also not
operating.

If omitted, the value 5 is used.
heartbeat_timeoutCountOnTransfer (the heart-beat time-out time on transfer)

This specifies the number of continuous lost heartbeat messages for detecting heartbeat-timeout errors
during data transfer between Ninf-G Client and Ninf-G Executable.

In the current Ninf-G implementation, heartbeat message is not sent while transferring data
(input/output arguments of RPC). Therefore, if the data is large and it takes long time for the data
transfer, heartbeat is not sent for long time hence heartbeat timeout error may occur. In order to avoid
this problem, this attribute is provided to set heartbeat timeout count specific for data transfer. Set 0
to ignore heartbeat timeout during the data transfer, or set large value which is large enough to avoid
unexpected heartbeat timeout error.

If ommitted, the same value with heartbeat timeoutCount attribute is used.

Note: This attribute is available for Ninf-G Version 4.2.0 or later.

redirect_outerr (redirection of the Ninf-G Executable output)

This specifies redirection of the standard error or standard output of a Ninf-G Executable to a Ninf-G
Client.

If omitted, the value 'true' is used.

Note: If the save stdout or the save stderr attribute on the server side configuration file is set, stdout
or stderr is not delivered to the Ninf-G Client regardless of the value of redirect outerr.

tcp_connect_retryCount (Retry count for TCP connect)

This specifies the maximum number of retries for establishing a TCP connection. This attribute is used
for the following cases.

o A connection for a connect back from a Ninf-G Executable to a client.
o A connection for GASS file transfers with FILENAME type arguments.

The default value of this attribute is 4.

Note: Ninf-G 2.3.0 and prior versions do not support this attribute. In order to disable this attribute,
set tep_connect_retryCount to 0 if the version of Ninf-G on the server is 2.3.0 or prior.

e tcp_connect_retryBaselnterval (Retry base interval for TCP connect)

This specifies the base interval time for the first retry. The value is in seconds and must be a
non-negative integer. This value is used as the maximum interval time for the first retry.

The default value of this attribute is 1.

e tcp_connect_retrylncreaseRatio (Retry increase ratio for TCP connect)
This specifies the increase ratio which is used to calculate the maximum interval time between retries.
The maximum interval time is calculated by multiplying this value and the maximum interval time for
the last retry. For the first retry, the value of tcp_connect retryBaselnterval is used as the maximum
interval time.
The value must be greater than 1.0 and the default value of this attribute is 2.0.

e tcp_connect_retryRandom (Random for TCP connect)
This specifies a flag that specifies whether a random value is used or not for the interval time. If the
value is true, the interval time between retries is set randomly between 0.0 seconds to the maximum
interval time. If the value is false, the maximum interval time is used as the interval time.
The default value of this attribute is true.

e argument_transfer (the timing for the return of the calling function for an asynchronous call)
When an asynchronous call function is used, this specifies the timing for that function's retumn.
The values that can be specified are 'wait' (wait until argument transfer is completed), 'nowait' (do not
wait until argument transfer is completed), and 'copy' (without waiting for the completion of argument
transfer, the values of the arguments passed to the asynchronous function are copied on the client
side, and the argument transfer is done in the background).
If omitted, 'wait' is used.

e compress (compression method)

This specifies the method for compressing the argument information. Either 'raw' or 'zlib' can be
specified.

If omitted, 'raw' is used.
e compress_threshold (the threshold value for performing compression)

This specifies the threshold value when compression is performed. If the argument information size
equals or exceeds the specified value, the information is compressed.

If omitted, the value of 64 kilobytes is used.
e argument_blockSize (The argument block size)

Arguments and results are divided into a specified block size when they are transferred between a
Ninf-G Client and a Ninf-G Executable.

The value of this attribute affects the performance of data transfer and an appropriate value should be
specified according to the size of the transferred data and network performance.

If 0 is specified, arguments and results will not be divided. If a positive integer is specified, they are
divided into blocks with the specified value. An error occurs if a negative value is specified.

If omitted, the default value 16Kbytes is used.

e workDirectory (the working directory for the Ninf-G Executable)
This specifies the working directory for the Ninf-G Executable.

If omitted, no changing for the working directory is made when the staging function is used, in any
other case, the Ninf-G Executable path is used for the working directory.

e coreDumpSize (core dump size for Ninf-G Executable)
This specifies the core dump file size for the Ninf-G Executable. The size is in 1024 -byte increments.

If 0 is specified, it means no core dump file is created. If -1 is specified, it means core dump file size
is unlimited and infinite.

If omitted, no setup for core dump file size is performed.
e commLog_enable (whether communication log output is enabled or disabled)
This specifies whether the communication log output function is enabled or disabled.
If 'true’ is specified, the communication log is output.
If not specified, the default value is false.
e commLog_filePath (communication log file name)
The name of the file to which the communication log is output is specified in the log file name.
The file name may include a path that includes a directory (e.g., "/home/myHome/var/logFile").
The file and directory name can include the following specifiers.
o "%t"
"%t" is replaced with the date as year, month and day, and the time in hours, minutes, seconds
and milliseconds ("yyyymmdd-hhmmss-MMM") (e.g., "/ home/myHome /var/logDir%t/logFile"
is replaced by "/home/myHome /var/logDir20030101-154801-123/logFile").
o "%h"
"%h" is replaced with the Ninf-G Client hostname.
o "%p"
"%p" is replaced with the process id of the Ninf-G Client.
The Ninf-G Executable id number is added to the end of the file name.

When omitted, the log is output to standard error. If the communication log file name is omitted,
commlLog suffix, commLog nFiles, and commLog maxFileSize are ignored.

e commLog_suffix (communication log file suffix)
When the communication log file is specified, this specifies the suffix used when the log file is created.
If a suffix is specified, the generated file name will be from "filename[000].suffix" to
"filename [nnn].suffix". If omitted, the generated file name will be from "filename.[000]" to "filename.
[nnn]". The number of files minus 1 is "nnn." The number of digits in "nnn" is the same as the
number of digits in the number of files minus 1. For example, if the number of files is set to 100, then
the number will range from "00" to "99."

e commLog_nFiles (number of files for communication log output)

This is the number of files created for communication log output.

0 indicates an unlimited number of files can be output. A negative value results in an error.
If omitted, the value 1 is used.

commlLog_maxFileSize (maximum number of bytes for the communication log file)

This specifies the maximum number of bytes for the communication log file.

If omitted, the value will be unlimited if the number of files is one, or 1Mbyte if the number of files is
two or more.

commlLog_overwriteDirectory (over-write permission for the directory)
This establishes overwrite permission for the directory. If the specified directory exists, this specifies
whether creation of log files in that directory is enabled or disabled. Operation in the case that the
directory exists is shown below.

o true: There is no error even if the directory specified by log filePath exists. It is possible that

files located in that directory will be overwritten.

o false: If the directory specified by log_filePath exists, an error results.
debug (debugging function enabled or disabled)
This specifies whether the debugging function is enabled or disabled.
If 'true' is specified, the debugger will be started up when the Ninf-G Executable starts up, allowing
debugging of the Ninf-G Executable. If 'false’ is specified, the Ninf-G Executable starts up without
starting the debugger.
If omitted, the default 'false’ value is used.
debug_display (debugging display)
This specifies an X11 display for displaying the debugging terminal emulator.
To use the debugger, start up the terminal emulator on the server machine, and run the debugger on
that terminal. This defines the value for the environment variable DISPLAY that is passed to the
terminal emulator.
debug_terminal (the path to the debugging terminal emulator)

This specifies the path to the terminal emulator command.

If omitted, the value 'xterm' is used. The Ninf-G Executable searches for terminal emulator command
in PATH that is set in the Ninf-G operating environment on the server machine that is used.

debug_debugger (path to the debugger)
This specifies the path to the debugger command.

If omitted, the value 'gdb' is used. The Ninf-G Executable searches for the debugger command in
PATH that is set in the Ninf-G operating environment on the server machine that is used.

debug_busyLoop (wait attach from debugger)
This specifies whether the Ninf-G Executable perform waiting attach from the debugger or not.

If 'true’ is specified, the Ninf-G Executable waits for attaching from the debugger, just after its
invocation.

The user needs to invoke the debugger and attach that Ninf-G Executable. Then the user must
change the variable for waiting attach (debugBusyLoop), and continue execution. (When the user uses
gdb, try "set var debugBusyLoop=0", "continue".)

If omitted, the default 'false’ value is used.

Note: It's very helpful to specify this attribute with "environment NG LOG LEVEL=4" in the SERVER
section. which displays which process id must be attached.

e environment (environment variable)

The environment variable specifies the environment variable that is passed to the Ninf-G Executable.
It can be written as 'variable name' only or 'variable name = value' style.

If omitted, the environment variable is not used.
4.3.11 SERVER_DEFAULT section

The SERVER DEFAULT section does not allow multiple definitions. This section may be omitted.

The SERVER DEFAULT section defines the default values for attributes which are used when attributes are
omitted in the SERVER section.

The description of the SERVER_DEFAULT section is the same as the SERVER section, except that the
attribute "hostname" is not described.

The SERVER DEFAULT section may also be described in the configuration file or other such places. (*)

(*) For example, even if the SERVER_ DEFAULT section is written later than the SERVER section, if
attributes are omitted in the previously described SERVER section, the attributes defined in the
SERVER DEFAULT section are used.

4.4 Invoke Server setup

Ninf-G4 implements mechanisms for remote process invocation as a separate module called Ninf-G Invoke
Server. This architecture enables to support any job submission interfaces by implementing Ninf-G Invoke
Server for the interface.

Users must specify the Invoke Server for each server in Ninf-G Client Configuration file except for Pre-WS
GRAM. RPC mechanisms for Pre-WS GRAM is embedded in Ninf-G Library and it is not necessary to use
Invoke Server for Pre-WS GRAM.

Here is an example of the description of <SERVER> section in the Ninf-G Client Configuration file for
specifying WS GRAM as a job submission interface.

<SERVER>

hostname your-host
invoke server GT4py
</SERVER>

Invoke Server can be set and configured in the Ninf-G Client Configuration file as described above. The
details of the configuration of Invoke Server are described in sections 4.3.9 and 4.3.10.

Each Invoke Server may have its own options. In order to specify such options, the following attributes are
provided in the Ninf-G Client Configuration file.

e "invoke server option" attribute in <SERVER> section

This attribute is used to specify Invoke Server options for a specific server.

e "option" attribute in <INVOKE_SERVER> section

This attribute is used to specify Invoke Server options for all servers.

Example:

<SERVER>

</SERVER>

hostname your-host
invoke server GT4py
invoke server option "delegate full proxy true”

Some attributes in <SERVER> section are interpreted by each Invoke Server. For example, Invoke Server
GT4py interprets "port" attribute as the port number of WS GRAM and Invoke Server SSH interprets "port"
attribute as the port number of sshd.

Note: The Invoke Server feature is supported only for pthreads flavors.

4.4.1 Invoke Server GT4py

Invoke Server GT4py invokes Ninf-G Executable via WS GRAM.

1. Prerequisite

GT4 must be installed on both client and server. globusrun-ws command must be available on the client
and remote server must be able to accept WS GRAM access.

2. Install

Invoke Server GT4py is automatically installed through the Ninf-G installation processes described in
section 2 of this manual.

3. Extra options

Invoke Server GT4py accepts the following extra options.

o delegate_full proxy

This attribute specifies the type of delegated proxy certificate. If delegate full proxy is set to
"true", full proxy certificate is delegated to the server. Otherwise, limited proxy certificate is
delegated. This option is provided for enabling cascading RPC since limited proxy certificate

does not allow subordinate GRAM accesses.

If omitted, "false" is used.

Note: If this option is set to true, extra command (globus-credential-delegate) is executed
internally that may take 10 to 20 seconds if Globus Toolkit Version 4.0.3 or prior is used.

Note: This option is available for Ninf-G Version 4.2.0 or later.
protocol

This attribute specifies the protocol to WS GRAM. If WS GRAM is non secure mode (started by
globus-start-container -nosec), "protocol http" must be set to access the WS GRAM.

If ommitted, "https" is used.

4. RSL extensions

WS GRAM RSL has <extensions> tag, which enables the user to pass extra information to WS GRAM
server.

Invoke Server handles this feature by using job rslExtensions attribute in <SERVER> section.

. Using staging function

Executable staging on WS GRAM server via Invoke Server GT4py requires the following steps in
advance.

1. Invoke GridFTP servers on both server and client hosts.
Invoke Server GT4py requires GridFTP servers on both remote and local hosts. The GridFTP
server should be invoked either directly or via inetd/xinetd daemon. The port for the GridFTP
server is not limited to the default port 2811.

2. Specify the port number for client-side GridFTP server in the client configuration file.
If the client-side GridFTP server does not use the default port (2811), the port number of the

GridFTP server must be specified in client configuration file. The port number can be specified
by gsiftp_port option in invoke_server option attribute in <SERVER> section.

example:

<SERVER>

invoke server GT4py

invoke server option "gsiftp port 12811”

</SERVERD

3. Specify subject name for authentication.

Subject names which are used for mutual authentication between WS GRAM container and
client-side GridFTP server depends on the owner of those daemons.

If they are invoked by the system, subject name of the host certificate is used. If they are
invoked by a user, subject name of the user certificate is used.

According to the combination of the owners of the WS GRAM container and the client-side
GridFTP server, some attributes need to be specified in the client configuration file.

m Case 1: Both the WS GRAM container and the client-side GridFTP server are run by the
system.

It is not necessary to specify the subject name.

m Case 2: The WS GRAM container is run by the system and the client-side GridFTP
server is run by a user.

The subject name of the user must be specified by staging source subject attribute in
<SERVER> section.

<SERVER>
invoke server option "staging source subject /Subject/of/User”

</SERVER>

m Case 3: Both the WS GRAM container and the client-side GridFTP server are run by a
user.

The subject name of the user must be specified by subject attribute in <SERVER> section.

<SERVER>
subject ”/Subject/of/User”

</SERVER>

m Case 4: The WS GRAM container is run by a user and the client-side GridFTP server is
run by the system.

The subject name of the user must be specified by subject attribute in <SERVER> section.
The subject name of the client-side host must be specified by staging source subject
attribute in <SERVER> section. The subject name of the user must be specified by
staging destination_subject and deletion_subject attributes in <SERVER> section.

<SERVER>

subject ”/Subject/of/User”

invoke server option "staging source subject /Subject/of/ClientHost”
invoke server option "staging destination subject /Subject/of/User”
invoke server_option "deletion subject /Subject/of/User”

</SERVER>

4. Create a scratch directory for the server.
For each server host, the scratch directory must be created for staging in advance.

The staging directory is "$HOME/.globus/scratch” ($GLOBUS_SCRATCH_DIR variable in GT4
GRAM RSL).

Please create the directory as follows:

% mkdir ~/.globus/scratch
% chmod 700 ~/.globus/scratch

4.4 .2 Invoke Server SSH

Invoke Server SSH invokes Ninf-G Executable via SSH.

1. Prerequisite

User must be able to execute commands on the server using ssh command. In addition, it is
recommended to configure user's ssh environments not to require user's input (e.g. password) for
executions to avoid repetitious input while Ninf-G application is executed. "ssh-agent” and "ssh-add"
commands are usually used for such purposes.

The following commands are required by Invoke Server SSH and must be available on the server.
/bin/sh, /bin/echo, /bin/grep, /bin/chmod, /bin/mkdir, /bin/cat, /bin/rm, /bin/kill

2. Install

Invoke Server SSH is automatically installed through the Ninf-G installation processes described in
section 2 of this manual.

3. Job submission system

Like Globus GRAM, Invoke Server SSH is able to launch remote processes via a backend queuing
system including SGE and PBS(x1). The backend queuing system is specified by "jobmanager"
attribute in <SERVER> section in the Ninf-G Client Configuration file. The value of "jobmanager"
attribute can be either "jobmanager-sge" for SGE or "jobmanager-pbs" for PBS.

Example:

<SERVER>
hostname example.org
invoke server SSH
jobmanager jobmanager-sge

</SERVER>

It should be noted that although the values "jobmanager-sge" and "jobmanager-pbs" are also used for
Invoke Servers for Globus GRAM (e.g. GT4py), jobmanager programs used by Invoke Server SSH are
implemented by the Ninf-G development team hence they are completely different with the jobmanager
programs provided by the Globus Toolkit.

The jobmanager program assumes that user's home directory is shared between front (master) node and
compute nodes.

Invoke Server SSH uses gsub, gstat, and qde!l commands in jobmanager-sge and jobmanager-pbs.
Therefore, the path of these commands should be included in PATH environment variable. Otherwise,
the path of these commands must be passed by options described below.

|Command | Option

lasub lssh_submitCommand
lastat lssh_statusCommand
fade lssh_deleteCommand

The detailed description of these options is described in section 4.4.2.4 of this manual.

(+1) Invoke Server SSH is tested with PBS Pro and Torque.
4. Extra options
Invoke Server SSH accepts the following extra options.
o ssh_command

This option specifies the path of "ssh" command. Invoke Server SSH connects to remote host
using the command specified by this attribute.

If omitted, /usr/bin/ssh is used.

o ssh_remoteSh
This option specifies the path of shell command to invoke shell on remote host. If backend
queuing system is used, the specified shell is also used in the script for backend queuing
system.

If omitted, /bin/sh is used.

o ssh user

This option specifies the user name on remote host. This value is passed to "ssh" command as
"-I" argument.

If omitted, "-1" option is omitted.
o ssh_option

This option specifies the any options which will be passed to "ssh" command. Multiple
ssh_option options can be specified.

o ssh_remoteTempdir
This option specifies the directory in which temporary files are created on remote host.
If omitted, home directory is used.

o ssh_submitCommand

This option specifies the command for submitting jobs on remote host. This option is available
only when backend queuing system is used.

If omitted, qsub is used.
o ssh_statusCommand

This option specifies the command for querying status of jobs on remote host. This option is
available only when backend queuing system is used.

If omitted, gstat is used.
o ssh_deleteCommand

This option specifies the command for deleting jobs on remote host. This option is available only
when backend queuing system is used.

If omitted, qde! is used.
o ssh MPIcommand

This option specifies the command for launching a MPI program on remote host. This command is
used when Invoke Server SSH invokes MPI jobs.

If omitted, "mpirun” is used.

o ssh MPloption
This option specifies the command line options which will be passed to "mpirun" command on
remote host. This is used when Invoke Server SSH invokes MPI jobs. Multiple ssh. MPloption
options can be defined.

o ssh MPInumberOfProcessorsOption

This option specifies the command line option of mpirun command for specifying the number of
processors. This option is used when Invoke Server SSH invokes MPI jobs.

The value of this option must include "%d" and Invoke Server SSH replaces it by the actual
number of processors.

If omitted, "-np %d" is used.

o ssh MPImachinefileOption

This option specifies the command line option of "mpirun" command for specifying machinefile.
This option is used when Invoke Server SSH invokes MPI jobs using backend queuing system.

The value of this option must include "%s" and Invoke Server SSH replaces it by the name of the
actual machinefile.

If omitted, "-machinefile %s" is used.
o ssh SGEparallelEnvironment

This option specifies the parallel environment of SGE. It is used when Invoke Server SSH
invokes MPI jobs or array jobs using SGE.

If omitted, *mpi* is used.
o ssh_PBSprocessorsPerNode

This option specifies the number of processors per a node. It is used when Invoke Server SSH
invokes MPI jobs or array jobs using PBS.

If omitted, 1 is used.
o ssh PBSrsh

This specifies the RSH command used on remote host when Invoke Server SSH invokes array
jobs using PBS.

If omitted, /usr/bin/ssh is used.
4.4.3 Invoke Server Condor

Invoke Server Condor invokes Ninf-G Executable via Condor(*1).

+]1 Condor Project: http://www.cs.wisc.edu/condor/

1. Prerequisite
o Condor 6.6.11 or later (unconfirmed, older than 6.6.11)
Condor must be installed on both client and server machines.
o JDK 5.0 or later
2. Install

Invoke Server Condor is not installed by the default Ninf-G installation and it must additionally
installed manually according to the following steps.

1. Set the NG_DIR environment variable

csh.
% setenv NG DIR /path/to/ninf-g

sh.
$ NG _DIR=/path/to/ninf-g ; export NG _DIR

2. Change directory to the directory of Invoke Server Condor.

% cd ng-4.x.x # expanded Ninf-G package
% cd utility/invoke server/condor

3. Run "make" command to compile Invoke Server Condor

% make

4. Run "make install” command to install Invoke Server Condor

% make install

This command copies the following files under ${NG_DIR} directory.

${NG DIR}/1ib/
m classad. jar - Log analysis library for Condor Job

m condorAPI. jar - Condor Java API Library
m condorlS. jar - Invoke Server Condor

${NG DIR}/bin/
® ng_invoke server.Condor - Startup script for Invoke Server Condor
3. Extra options
none
4. Information

Invoke Server Condor automatically creates the Condor job cluster log when it invokes jobs. The name
of the log file is "ninfg-invoke-server—condor-log".

5. Limitation

o Invoke Server Condor supports vanilla universe only.
o MPI job is not supported.

4.4 .4 Invoke Server NAREGISS

Invoke Server NAREGISS invokes Ninf-G Executable via NAREGI Super Scheduler.
1. Prerequisite
NAREGI Middleware V1.1 or later is required. Java 1.5.0 or later.
2. Install

Invoke Server NAREGISS can be installed as a part of Ninf-G installation steps. Invoke Server
NAREGISS is installed if --with-naregi is specified as a Ninf-G configure script option.

Example:

% ./configure —-with-naregi

NOTE: If NAREGI Middleware is not installed in default the directory (/usr/naregi), it is necessary to
specify it with configuration option " - -with-naregidir".

Details of Ninf-G configure script are described in 2.4 Configure command options.

3. Note

Invoke Server NAREGISS assumes that the Ninf-G Client is invoked as a job via NAREGI SS, and
expects the followings.

o URL of the NAREGI SS server is set as environment variable NAREGI GRIDSS _URL.
o Renewal Service hostname and port number is set as environment variable
NAREGI RENEWAL HOSTPORT.
o My Proxy server hostname and port number is set as environment variable
NAREGI MYPROXY HOSTPORT.
o VOMS compliant proxy credential
4. Extra options
Invoke Server NAREGISS accepts the following extra options.
o workingPrefix

This option specifies the directory for the temporary files used by Invoke Server NAREGISS on
remote host.

If the remote host is a PC cluster, it is recommended to set this option to a directory which is
shared by all cluster nodes.

If omitted, user's home directory is used.
o CandidateHost

This option specifies the system on which Ninf-G Executable will run. This is specified by the
hostname of the head node of the system.

Multiple CandidateHost options can be specified.
o OperatingSystemName

This option specifies the name of the operating system the computing resources. It is required
by NAREGI Super Scheduler.

o CPUArchitectureName

This option specifies CPU architecture of the computing resources. It is required by NAREGI
Super Scheduler.

o Individual CPUCount

This option specifies minimum number of CPUs per a computing node. This is required by
NAREGI Super Scheduler.

o MemoryLimit

This option specifies the maximum size of physical memory that the Ninf-G Executable will use.
This is required by NAREGI Super Scheduler.

o logFlags
This option controls the output of logs of Invoke Server NAREGISS.

The following values can be specified.

IS COMMAND : Output logs about communication between Ninf-G Client and Invoke Server
SS_ COMMAND : Output logs of XML document related NAREGI SS

SS_WF_ID : Output logs of EPR of NAREGI SS job

ALL : Output all logs

Multiple values can be specified by delimiting them by spaces.
If omitted, Invoke Server NAREGISS outputs the minimum logs.

Note: If log file is not specified using invoke_server log attribute in <CLIENT> section or
log_filePath in <INVOKE_SERVER> option, this option is ignored.

Note: Whenever a function/object handle is created, Invoke Server receives the Invoke Server
options. But this option is effective only at the first time of a handle creation. Therefore, this
option must be specified not in invoke_server option attribute in <SERVER> section but in option
attribute in <INVOKE_SERVER> section.

o WallTimeLimit
This option specifies the maximum job execution wall clock time in seconds. job_maxWallTime
attribute of <SERVER> section also specifies the maximum job execution wall clock time,
however it is specified in minutes.
If both this option and job_maxWallTime attribute are specified, the value of this option is used.
If neither this option nor job_maxWallTime attribute are specified, "1000 seconds” is used as the
default value of the maximum job execution wall clock time.

o MPIType
This option specifies MPI type.
If omitted, "GridMPI" is used.

o MPITasksPerHost
This option specifies the number of processes per host.
If omitted, "1" is used.

5. Known Problems

Invoke Server NAREGISS has some problems. Details are described in 11.5 Problems related to
NAREGI SS.

4.5 Running the Ninf-G Client program
e Generating the Globus proxy certificate
% grid-proxy-init
Note: This operation is required if PreWS GRAM or WS GRAM is used.
e Running the Ninf-G Client Program

% ./test client [args ...]

4.6 Creating application programs

Ninf-G supports the GridRPC API for C and Java.

In this section, the flow of an application program (written in C) for using GridRPC is described and a few
typical GridRPC API functions are introduced.

Of the functions described here, those that contain *_np are not included in the GridRPC API standard (i.e.,
they are specific to Ninf-G).

A full list of the GridRPC APIs and a detailed explanation of each API can be found in chapter 7, "API
Reference.”

e Flow of an application program for using GridRPC
The typical flow of an application program for using GridRPC is as follows.

Initialization

Creation of handles

Calling and synchronizing remote functions and remote methods
Destruction of handles

End processing

Q1 ™ QWD —

The functions used in the above processes are described below.
1. Initialization
The following function is used for initialization.
grpc_error _t grpc_initialize(char *configFile)

This function accepts the name of the configuration file as an argument, reads the file named by the
argument, analyzes the content, and saves the values.

If the argument value is NULL, the file specified by the NG CONFIG_FILE environment variable is
taken to be the configuration file.

As the return value, an error status code is returned to inform of failure to read the configuration file
or failure to save the values that were read.

An example of using grpc_initialize() is given below. (In this example, the configuration file name is
taken from the command line argument and that value is used as the argument.)

main (int argc, char *argv[]) {
grpc_error_t result;
char *configFile = argv[1];

result = grpc_initialize(configFile);

2. Creation of handles

In GridRPC, "handles" are used when performing operations such as executing remote functions and
remote methods. A handle must be created before executing a remote function or remote method, but
the type of handle created differs with the type of Ninf-G Executable used.

If only one remote function is defined for the Ninf-G Executable used, a "function handle" is used; if
multiple remote methods are defined, an "object handle" is used.

Functions for creating both kinds of handles are shown below.

o function handle

grpc _error_t
grpc_function handle init(
grpc_function handle t *handle,
char *server name,
char *func_name)

o object handle

grpc_error_t
grpc_object handle init np(
grpc_object handle t np *handle,
char xserver name,
char *class name)

These functions accept a 'server name' and 'function or class name,' and create a handle for operating
the specified Ninf-G Executable on the specified server.

As the return value, an error code is returned to inform of failure to create the handle.

For example, a function handle is created as follows.

grpc_function handle t *xhandle;
grpc_function handle init(&handle, "server.example.org”, ”"lib/mmul”);

The following functions for creating multiple handles at one time are also provided by Ninf-G. (See
Section 7 for details)

O grpc_function handle array init np()
O grpc_object handle array init _np()

. Calling and synchronizing remote functions and remote methods

The handle just created can be used to call the specified remote function or remote method on the
server. When the call is made, the value of the argument defined by the Ninf-G IDL must be passed.

The functions used for calling a function differ for a function handle and an object handle. When calling
a remote method with an object handle, the name of the remote method must be specified.

Remote functions and remote methods can be called in two ways, with a 'synchronous call' and with an
'asynchronous call.'

The synchronous call does not return until the execution of the remote function or remote method is
completed.

The asynchronous call returns either at the beginning or at the completion of the sending of the
arguments to the remote function or remote method; it then waits for the completion of the remote
function or remote method to obtain the result. (The return timing of the function that makes the
asynchronous call can be specified in the configuration file.)

o Synchronous calling functions

Functions for making remote functions and remote methods calls of the synchronous type are
shown below.

m function handle

grpc error t
grpc_call(
grpc_function handle t *xhandle, ...)

m object handle

grpc_error_t

grpc_invoke np(
grpc_object handle t np *handle,
char xmethod name, ...)

These functions accept the handle and the parameter values to be passed to the remote function
or remote method (the remote method name also, in the case of the grpc_invoke_np() function),
execute the computation by the specified remote function or remote method, and return as soon
as the computation is completed.

As the return value, an error status code is returned to inform the user when the execution of
the remote function or remote method fails.

For example, a call to a remote function or remote method defined in the IDL file below is made
in the form of grpc_call() below that.

Definition in the IDL file

mmul (double %A, double *B, double *C)

Ninf-G Client application program

double A[10], B[10], C[10];

/¥ A, B, and C are replaced by values %/
é}bc function handle t *handle;

result = grpc_function handle init(&handle,

"server.example.org”, "lib/mmul”);

}ééult = grpc_call(&handle, A, B, C);

o Asynchronous calling functions

Functions for making remote functions and remote methods calls of the asynchronous type are
shown below.

m function handle

grpc_error_t

grpc call async(
grpc_function handle t *handle,
grpc_sessionid t *session_id, ...)

m object handle

grpc_error_t

grpc_invoke _async_np(
grpc_object handle t np *handle,
char *method name,
grpc_sessionid t *session_id, ...)

These functions accept the handle and the parameter values to be passed to the remote function
or remote method (remote method name also, in the case of the grpc_invoke_np() function), issue
a request for computation to the specified remote function or remote method, and return when

the transmission of arguments begins or when it ends (which can be set in the configuration file).

If successful, GRPC NO_ERROR is returned. In the case of an error, an error code is returned.

The returned session 1D is used when waiting for the execution results or for other such
pUrposes.

Functions for waiting for the completion of the computation for an asynchronous call are shown
below. All of these functions return an error status code to inform of cases in which execution of
the session fails.

grpc_error_t grpc_wait(grpc_sessionid t session_id)

This waits for completion of the session specified by the session ID passed in the argument
and returns when the session ends.

grpc_error_t grpc_wait _any(grpc_sessionid t xid)
This waits for completion of any of the current sessions and returns when the session ends.
grpc error t grpc wait and(grpc sessionid t *sessions, size t length)

Waits for completion of all of the sessions specified by the array of session IDs and returns
when they end.

grpc_error_t grpc_wait or(grpc_sessionid t *sessions, size t length, grpc_sessionid t *id)

Waits for completion of any of the sessions specified by the array of session IDs and
returns when one of them ends.

grpc error t grpc wait all()

This waits for completion of all of the current sessions and returns when they all have
ended.

4. Destruction of handles

For releasing resources, unnecessary "handles" must be destructed. The function for destructing
differs with the type of "handles."

Functions for destructing handles are shown below.

o function handle

grpc_error_t
grpc_function handle destruct(
grpc_function handle t *handle)

o object handle

grpc error t
grpc_object handle destruct np(
grpc_object handle t np *handle)

These functions destruct the specified handle.
As the return value, an error status code is returned to inform of failure to destruct the handle.

If two or more handles were created at once, then the following functions for destructing multiple
handles at one time must be used.

O grpc_function handle array destruct np()
O grpc object handle array destruct np()

b. Termination processing

The following function is used to perform termination processing.

grpc_error_t grpc_finalize()

This function executes the processing when the Ninf-G Client is terminated.

The return value is an error status code to inform the user when termination processing fails.
e Other functions

The API that provides capabilities that have been added in Ninf-G v2 is described below.

o Callback

When callback is used, "a function that has both the same name as the name of the callback type
argument described in the Ninf-G IDL and the same arguments"” must be defined and
implemented in the application program.

Below is an application program that corresponds to the callback example that appears in chapter
3, "Creating and setting up server-side programs”(section 3.1). (Ninf-G Executable and Ninf-G
Client exchange status values)

Note: The maximum number of parameters which can be defined as callback function is 32.

/% global */
int executableStatus;
int clientStatus;

void callback func(int c[1, int d[])

{
executableStatus = c[0];
d[0] = clientStatus;

}

main()
{
grpc function handle t handle;
grpc_error_t result;
int b;

result = grpc_function_handle init(&handle,
"server.example.org”, "test/callback test”);
result = grpc call(&handle, 100, &b, callback func);

o Checking the session status

A function for checking the status of a session is shown below.

grpc_error_t

grpc_session_info_get np(
grpc_sessionid t session_id,
grpc_session_info t np *info,
int *status)

This checks the status of the session that corresponds to the session ID specified in the
argument.

When the heartbeat is not obtained normally, GRPC_SESSION DOWN is returned as the 3rd
argument of this function. If an error has occurred, the error code is returned.

o Canceling a session

A function for canceling a session is shown below.

grpc_error_t grpc_cancel (grpc_sessionid t session_id)

This checks the status of the session that corresponds to the session ID specified in the
argument.

An error code is returned as the return value to inform the user that an error has occurred.
appendix

a.l : How to use multiple user certificates

Ninf-G Client is able to use multiple user proxy certificates. Being enabled by Invoke Server, this capability
is useful for using different user proxy certificates according to the security configuration (accepted CAs) of
servers.

This section describes how to use multiple certificates.

a.1.1 Create a script which specifies a user proxy certificates used for user authentication
by the server. It is recommended to create a script using a template provided by Ninf-G.

Copy the script from template (§NG_DIR/etc/ng_invoke_server.GTtempl).

% cp $NG DIR/etc/ng_invoke server.GTtempl $NG DIR/bin/ng invoke server.GT4cert]1
% chmod u+x $NG DIR/bin/ng_invoke server.GT4cert]

Modify the copied script in which you have to specify the user proxy certificate(+1) and the script file(*2)
which you will use.

#f1 /bin/sh

X509 USER _PROXY=/path/to/x509up xxxx <- (%1)
export X509 USER PROXY
exec $NG DIR/bin/ng_invoke server.GT4py <- (%2)

a.1.2 Modify the client configuration file

Modify the client configuration file and specify the Invoke Server that you created at a.1.1.

<SERVER>
hostname example.org

invokeiserver GT4cert1
</SERVER>

a.2 : How to implement cascading RPC

Ninf-G4 supports cascading RPC, which enables Ninf-G Executable to call GridRPC API. Cascading RPC is
realized by (1) implementing remote functions that calls GridRPC API (server-side implementation) and (2)
configuring Ninf-G client to enable delegation of full-proxy certificates (client-side configuration).

1. Server-side implementation

In the IDL file,

o Set ng_cc to Compiler and Linker.

Example:

Compiler "$§(NG DIR)/bin/ng cc”;
Linker "$(NG DIR)/bin/ng cc”;

o Include the grpc.h on IDL file.

Example:

Globals { #finclude <grpc.h> }

o Implement a remote function that calls GridRPC APL

It is implemented by embedding GridRPC APIs such as grpc_initialize(),
grpc_function_handle_init(), and grpc_call() in the body of the remote function.

o Compile the IDL file by an ordinary way.
2. Client-side configuration

o Set the "delegate full proxy true” option to Invoke Server GT4py in <SERVER> section of
Ninf-G Client Configuration file.

Example:

<SERVER>
hostname ...
invoke server GT4py

invoke server option "delegate full proxy true”
</SERVER)>

o NG _DIR environment variable must be set in Ninf-G Executable if Invoke Server is used for
subordinate RPC since Invoke Server requires NG_DIR environment variable. NG_DIR
environment variable can be set by either "environment" attribute in <SERVER> section of the
Client Configuration file on the client side or "path" attribute in <INVOKE _SERVER> section of
the Client Configuration file on the remote side.

Example:

<SERVER>

éh;ironment NG DIR=/remote/server/ng dir/path
</SERVER>

o Some notes about working directory of Ninf-G Executable.
Ninf-G Executable searches the following files in the current working directory.

m Client Configuration file which is passed as an argument to grpc_initialize().
m Local LDIF files specified by the Client Configuration file.

If staging is off, Ninf-G Executable runs on the directory in which the Ninf-G Executable exists.
If staging is on, Ninf-G Executable always runs on the user's home directory unless working

directory is explicitly specified by the user using "workDirectory" attribute in the Client
Configuration file.

Example:

<SERVER>

ﬁb}kDirectory /path/to/work/directory/of/executable
</SERVER>

Note: Cascading RPC is available for Ninf-G Version 4.2.0 or later.

last update : $Date: 2008/09/12 08:27:42 $

b. Examples

This section give you a tutorial of how to use the Ninf-G system for programming on the Grid. Simplicity of
programming is the most beneficial aspect of the Ninf-G system, and we hope that users will be able to
gridify his programs easily after reading this document. We hope to extend this example further to cover
more advanced Ninf-G features. Examples are provided for GRPC API.

Grid RPC API

e Gridifying a Numerical Library with GridRPC

e (ridifying Programs that use Files

e Using Multiple Servers for Parallel Programming on the Grid -- The Parameter Sweep Survey Example.
o Calculating PI using a simple Monte Carlo Method
o Gridifying the PI program.
o Employing Multiple Servers for Task Paralle] Computation.

Gridifying a Numerical Library with Grid RPC API

We first cover the simple case where the library to be Gridifyied is defined as a linkable library function.
Below is a sample code of a simple matrix multiply. The first scalar argument specifies the size of the matrix
(n by n), parameters a and b are references to matrices to be multiplied, and c is the reference to the result
matrix. Notice that, 1) the matrix (defined as arrays) do not itself embody size as type information, and 2) as
a result there is a dependency between n and a, b, ¢. In fact, since array arguments are passed as a
reference, one must assume the contents of the array are implicitly shared by the caller and the callee, with
arbitrary choices as to using them as input, output, or temporary data structures.

void mmul (int n, double * a, double * b, double * ¢)

{

double t;
int i, j, k;
for (i =0; i < n; i++) {

for (j =0; j < n; jt+t) {
t =0;
for (k = 0; k < n; kt+){
t += ali * n + k] * b[k * n + j];
}

cli *n+ j]=t;

The main routine which calls mmul() might be as follows:

main()

{
double A[N*N1, B[N#NJ, C[N*NJ;

initMatA(N, A); /% initialize %/
initMatB(N, B); /% initialize %/

mmul (N, A, B, C);

In order to "Gridify", or more precisely, allow mmul to be called remotely via GridRPC, we must describe
the interface of the function so that information not embodied in the language type system becomes
sufficiently available to the GridRPC system to make the remote call. Although future standardization is
definitely conceivable, currently each GridRPC system has its own IDL (Interface Description Language); for
example, Ninf has its own NinfIDL definition. Below we give the interface of mmul() defined by the NinfIDL
syntax:

Module mmul;

1:

2:

3: Define mmul (IN int N, IN double A[N%NIJ,

4: IN double B[N%N], OUT double CLN%NJ])
5: "matmul”

6: Required "mmul _lib.o”

7:

Calls ”C” mmul (N, A, B, C);

Line 1 declares the module name to be defined. There is a one-to-one correspondence between a module
and an IDL file, and each module can have multiple entries to gridify multiple functions. Lines 3-7 are the
definition for a particular entry mmul/mmul. Here, lines 3 and 4 declare the interface of the entry. The
difference between a NinfIDL entry definition and the C prototype definition is that there are no return
values (the return value of the Ninf call is used to return status info), argument input/output modes are
specified, and array sizes are described in terms of the scalar arguments.

We note here that NinfIDL has special features to efficiently support gridifying of a library (similar features
are found in Netsolve IDL). In contrast to standard procedure calls within a shared memory space, GridRPC
needs to transfer data over the network. Transferring the entire contents of the array will be naturally very
costly, especially for huge matrices appearing in real applications. Here, one will quickly observe that
surprising number of numerical libraries take for granted the fact that address space of data structures, in
particular arrays are shared, and (a) only use subarrays of the passed arrays, (b) write back results in the
passed arrays, and (c) pass arrays as scratchpad temporaries. The portion of the arrays to be operated, etc.,
are determined by the semantics of the operation according to the input parameters passed to the function.
For example in mmul, the whole arrays need to be passed, and their sizes are all N by N, where N is the first
scalar parameter; A and B only need to be passed as input parameters and their contents do not change,
while C is used as a return argument and thus need not be shipped to the server, but the result needs to be
shipped back to the client. In general, in order to determine and minimize the size of transfer, NinfIDL allows
flexible description of the array shape used by the remote library. One can specify leading dimensions,
subarrays, and strides. In fact arbitrary arithmetic expressions involving constants and scalar arguments can
be used in the array size expressions.

Line b is the comment describing the entry, while line 6 specifies the necessary object file when the
executable for the particular file is to be linked. Line 7 gives the actual library function to be called, and the
calling sequence; here "C" denotes C-style (row-major) array layout.

The user compiles this IDL file using the Ninf IDL compiler, and generates the stub code and its makefile.
By executing this makefile a Ninf executable is generated. The user will subsequently register the
executable to the server using the registry tool.

Now the client us ready to make the call of the network. In order to make a GridRPC call, the user modifies
his original main program in the following manner. We notice that only the function call is modified- - -No
need to change the program to adjust to the skeleton that the IDL generator generates as is with typical
RPC systems such as CORBA. Moreover, we note that the IDL, the stub files and the executables are only
resident on the server side, and the client only needs to link his program with a generic Ninf client library.

main()

{
double A[N%N], B[N%NJ], C[N%NJ;
grpc_function handle t handle;

grpc_initialize(argv[1]);

initMatA(N, A); /x initialize %/
initMatB(N, B); /% initialize %/

grpc_function handle default(&handle, "mmul/mmul”);
if (grpc_call(&handle, N, A, B, C) != GRPC_NO ERROR) {

fprintf(stderr, "Error in grpc_call¥n”);
exit(1);

grpc_function handle destruct(&handle);

grpc_finalize();

Gridifying Programs that use Files

The above example assumes that the numerical routine is supplied as a library with well-defined function
API, or at least its source is available in a way such that it could easily converted into a library. In practice,
many numerical routines are only available in a non-library executable and/or binary form, with input/output
interfaces using files. In order to gridify such "canned" applications, GridRPC systems typically support
remote files and their automatic management/transfer.

We take gnuplot as an example. Gnuplot in non-interactive mode inputs script from a specified file, and
outputs the resulting graph to the standard output. Below is an example gnuplot script.

set terminal postscript
set xlabel "x”

”

set ylabel "y
plot f(x) = sin(x*a), a = .2, f(x), a = .4, f(x)

If this script is saved under a filename "gplot":

> gnuplot gplot > graph.ps

will store the postscript representation of the graph to the file graph.ps. In order to execute gnuplot
remotely, we must package it appropriately, and moreover must automatically transfer the input (gplot) and
output (graph.ps) files between the client and the server.

Ninf-G IDL provides a type filename to specify that the particular argument is a file. Below is an example of
using gnuplot via GridRPC.

Module plot;
Define plot(IN filename plotfile, OUT filename psfile)
"invoke gnuplot”

{
char buffer[1000];
sprintf(buffer, "gnuplot %s > %s”, plotfile, psfile);
system(buffer);

The IDL writes the string command sequence to invoke gnuplot into a variable buffer|[], and invokes gnuplot
as a system library. The file specified as an input is automatically transferred to the temporary directory of
the server, and its temporary file name is passed to the stub function. As for the output file, only the
temporary file name is created and passed to the stub function. After the stub program is executed, the files
in output mode as specified in the IDL are automatically transferred to the client, and saved there under the
name given in the argument.

Below is an example of how this function might be called via GridRPC.

#include <stdio.h>
#include "grpc.h”

main(int argc, char xxargv)

{ grpc_function handle t handle;
grpc_initialize(argv[1]);
grpc_function handle default(&handle, "plot/plot”);
if (grpc_call(&handle, argv[2], argv[3]) != GRPC_NO ERROR) {

fprintf(stderr, "Error in grpc_call¥n”);
exit(1);

grpc_function handle destruct(&handle);

é}bcffinalize();

We also note that, by combining this feature with the technique of using multiple servers simultaneously
described in the next section, we can process large amount of data at once.

Using Multiple Servers for Parallel Programming on the Grid --- The
Parameter Sweep Survey Example.

GridRPC can serve as a task-parallel programming abstraction, whose programs can scale from local
workstations to the Grid. Here, we take an example of simple parameter sweep survey, and investigate how it
can be easily programmed using GridRPC.

Calculating PI using a simple Monte Carlo Method

As an example, we compute the value of PI using a simple Monte Carlo Method. We generate a large number
of random points within the square region that exactly encloses a unit circle (actually, 1/4 of a circle). We
calculate the value of PI by inverse computing the area of the circle according to the probability that the
points will fall within the circle. The program below shows the original sequential version.

long pi_trial(int seed, long times)
long |, long counter = 0;

srandom(seed) ;
for (1 =0; | < times; I++){
double x = (double)random() / RAND MAX;
double y = (double)random() / RAND_ MAX;
if (x xx+y=xy<1.0)
counter++;
}

return counter;

}

main(int argc, char xxargv)
{
double pi;
long times = atol(argv[1]);
count = pi_trial (10, times);
pi = 4.0 * (count / (double) times);
printf("Pl = %f¥n”, pi);

Gridifying the PI program.

First, we rewrite the program so that it does the appropriate GridRPC calls. The following steps are needed:

1. Separate out the pi_trail() function into a separate file (say, trial_pi.c), and create its object file
trial_pi.o using a standard C compiler.
2. Describe the interface of pi_trial in an IDL file.

Module pi;

Define pi_trial (IN int seed, IN long times, OUT long % count)
"monte carlo pi computation”
Required "pi_trial.o”
{
long counter;
counter = pi_trial(seed, times);
*count = counter;

3. Rewrite the main program so that it makes a GridRPC call.

main(int argc, char *xxargv)

{
double pi;
long times, count;
grpc_function handle t handle;

grpc_initialize(argv[1]);
times = atol(argv[2]);
grpc_function handle default(&handle, "pi/pi _trial”);

if (grpc_call(&handle, 10, times, &count) I= GRPC_NO ERROR) {
fprintf(stderr, "Failed in grpc_call¥n”);
exit(2);

}

pi = 4.0 x (count / (double) times);
printf("Pl = %f¥n”, pi);

grpc_function handle destruct(&handle);

grpc_finalize();

We now have made the body of the computation remote. The next phase is to parallelise it.
Employing Multiple Servers for Task Parallel Computation.

We next rewrite the main program so that parallel tasks are distributed to multiple servers. Although
distribution of tasks are possible using metaserver scheduling with Ninf (and Agents with Netsolve), it is
sometimes better to specify a host explicitly for performance reasons, for low overhead and explicit load
balancing. Ninf-G allows explicit specification of servers by specifying the hostname in the initialization of
the function handle.

The standard grpc_call() RPC is synchronous in that the client waits until the completion of the computation
on the server side. For task-parallel execution, Ninf-G facilitates several asynchronous call APIs. For
example, the most basic asynchronous call grpc_call_async is almost identical to grpc_call except that it
returns immediately after all the arguments have been sent. The return value is the session ID of the
asynchronous call; the 1D is used for various synchronizations such as waiting for the return value of the call.

There are several calls for synchronization. The most basic is the grpc wait(grpc sessionid t I1D), where we
wait for the result of the asynchronous call with the supplied session ID. grpc_wait_all() waits for all preceding
asynchronous invocations made. Here, we employ grpc_wait_all() to parallelize the above PI client so that it
uses multiple simultaneous remote server calls:

#include "grpc.h”

1

2 fdefine NUM_HOSTS 8

3 char % hosts[] = {"node0.example.org”, "nodel.example.org”, "node2.example.org”, "node3.example.org”,
4 "node4. example.org”, "nodeb.example.org”, "node6.example.org”, ”"node7.example.org”’};
5

6 grpc_function handle t handles[NUM _HOSTS];

7 grpc_sessionid t ids[NUM_HOSTS];

8

9 main(int argc, char xxargv) {

10 double pi;
11 long times, count[NUM HOSTS], sum;
12 char % config file;
13 int i;
14 if (arge < 3) {
15 fprintf(stderr, "USAGE: %s CONFIG FILE TIMES ¥n”, argv[0]);
16 exit(2);
17 }
18 config file = argv[1];
19 times = atol(argv[2]) / NUM _HOSTS;

21 /% Initialize GRPC runtimes. %/

22 if (grpc_initialize(config file) != GRPC_NO ERROR) ({
23 exit(2);

24 }

25 /% Initialize handles. %/

26 for (i = 0; i < NUM_HOSTS; i++)

27 grpc_function handle init(&handles[i], hosts[i], "pi/pi_trial”);
28

29 for (i = 0; i < NUM_HOSTS; i++) {

30 /* Parallel non-blocking remote function invocation. %/
31 if (grpc_call _async(&handles[i], &ids[i], i, times, &count[i]) != GRPC_NO ERROR) {
32 grpc_perror np("pi_trial”);

33 exit(2);

34 }

35 }

36 /% Sync. *x/

37 if (grpc_wait all() != GRPC_NO_ERROR) {

38 grpc_perror np("wait _all”);

39 exit(2);

40 }

41

42 for (i = 0; i < NUM_HOSTS; i+4)

43 grpc_function handle destruct(&handles[i]);

44

45 /% Compute and display pi. */

46 for (i =0, sum = 0; i < NUM_HOSTS; i++)

47 sum += count[i];

48 pi = 4.0 % (sum / ((double) times * NUM_HOSTS));

49 printf (Pl = %f¥n”, pi);

50

51 /% Finalize GRPC runtimes. x/

52 grpc_finalize();

53 }

We specify the number of server hosts and their names in lines 2 and 3-4, respectively. Line 6 is the port
number used, and line 19 divides the number of trials with the number of servers, determining the number of
trials per server. The for loop in lines 29-35 invokes the servers asynchronously. Line 47 aggregates the
results returned from all the servers.

In this manner, we can easily write a parallel parameter sweep survey program using the task parallel
primitives of GridRPC. We next modify the program to perform dynamic load balancing.

last update : $Date: 2005/07/07 11:06:40 $

6 Ninf-G IDL Specifications

1 Ninf-G IDL keywords

2 Ninf-G IDL syntax

.3 IDL sample

4 Example of output results

Z|=

Ninf-G IDL files are processed by CPP(C Pre Processor).
Please pay attention to CPP keywords(ex. "#include").

6.1 Ninf-G IDL keywords

Keywords described below are reserved by Ninf-G. You can't use these words as the name of module,
functions or parameters.

e Module module name ;

This specifies the identifier of the Ninf-G Executable. The name specified here is used for naming the
Ninf-G stub file and the makefile for compiling it, etc.

e Globals { ... C descriptions ... }

Global variables that can be used from all of the remote functions and remote methods that can be
executed by the Ninf-G Executable can be defined. The expression between braces ({ ¢ }) is written
in C.

Note: The maximum number of Globals which can be defined in one IDL file is 100.
Note: The strings written in "Globals" are put to the Ninf-G stub file which is generated by ng gen as
it is. So you can put CPP keywords (like "#include < foo.h >") to the Ninf-G stub file by using

"Globals".
But if you want multiple of them, please use multiple "Globals" like below.

Globals{#tinclude < foo.h >}
Globals{#finclude < bar.h >}

You can't write like below because Ninf-G IDL files are processed by CPP.

Globals{

#include < foo.h >
#include < bar.h >
}

e Compiler ”

This specifies the compiler to be used when the Ninf-G Executable is compiled.
® CompileOptions ”

This specifies the options to be applied when the Ninf-G Executable is compiled.

Note: The maximum number of CompileOptions which can be defined in one IDL file is 100.
e Linker ”

This specifies the linker to be used at link time of Ninf-G Executable.

® Library 7 ... 7"

This specifies the libraries and the options to be applied at the link time of Ninf-G Executable.

For example, ("-1xxx") and the object file (".0") or library file (".a") will be specified in this section.
The options specified in this section are applied only at link time not at compile time (*.c -> *.0).

Note: The maximum number of Library which can be defined in one IDL file is 100.

” ”

® FortranFormat

The Ninf-G stub is output as a C program. When functions that are written in FORTRAN are called
from that program, the name must be converted to a particular format (”_%s_”, where %s is a function
name). That conversion format is shown below.

The following character strings have special meanings; they are replaced by particular character strings
at processing time.

o %s : Original function name
o %1 : All-uppercase function name

e DefClass class_name
description”]

[”

[Required "files-or-libs”]
[Backend "MP1” | "BLACS”]
[
[

Language "C” | ”C++” | "FORTRAN” |

Shrink "yes” | "no”

{ [DefState{ ... }]

DefMethod method_name (argl, arg?, ...) { ...}
)

Defines a remote class.

One DefState section and one or more remote methods can be defined for the Ninf-G Executable. The
DefState section can be omitted.

The attribute values that can be set are described below.

|description A character string that explains this Ninf-G Executable.

|Any character string may be used.
[Required |The remote function object file (".0").

This specifies the object file (".0") that stores the functions used by the remote
function.

[Backend [This specifies the backend at run time.

"MP1” or "BLACS” can be specified.
If omitted, no backend is used.

|Langua9e |The programming language in which the remote method is written.
”C”, "C++” Or "FORTRAN” can be specified. If omitted, the default value is "¢”.
[Shrink [Specify whether or not shrinking is enabled.

If "yes” is specified, shrinking is applied to the array elements.
If omitted, shrinking is not done.

e DefState { ... C descriptions ... }
The variables maintained by Ninf-G Executable are defined in C.

Those values can be shared by multiple remote methods of the same Ninf-G Executable.

® DefMethod

[”description”]
[CalcOrder exp]
{ { C descriptions } | calls lang-spec function name (argl, arg2, ...); }

Defines a remote method.

A C program can be written in the remote method, and functions can be called from within the program
or by using the calls keyword to specify the functions to be called.

Note: following keywords are reserved by Ninf-G. So you can't use these keywords in your remote
function.

o label : ”ng stub_end”, "ng_stub _mpi end”
o variable : "ng stub rank”

The language in which the function that is called from the remote method is written can be specified in
the lang-spec argument that comes right after the calls keyword. Currently, ”¢”, ”C++” or "FORTRAN”
can be specified. If omitted, the default ”¢” is used.

If "FORTRAN” is specified here, the called function must be converted to the format specified by
FortranFormat before it is called.

The attribute values that can be set are described below.

|"description” |A character string that explains this remote method.

|Any character string can be used.

[CalcOrder [Calculation order.

The cost of executing the remote method can be specified here in arbitrary expression
form.

o Special methods

If argumentless remote methods are defined with the following names, those remote methods will
be executed automatically when the Ninf-G Executable starts up and ends.

|7initial ize() |Executed at startup
|7fina| ize() |Executed at end

e Define function name (parameterl, parameter?,

[”description”|

[Required "files-or-libs”]
[alcOrder exp]

[Backend "MP1”
[
[
{

"BLACS”]
Language "C” | "C++” | "FORTRAN"]
Shrink "yes” no]
{ C descriptions } | calls lang-spec function name (argl, arg2, ...); }

Defines a remote function.

This remote function is a method that is exclusive to the Ninf-G Executable. A C program can be
written in the remote function, and functions can be called from within the program or by using the
calls keyword to specify the functions to be called.

Note: following keywords are reserved by Ninf-G. So you can't use these keywords in your remote
function.

o label : ”ng stub_end”, "ng_stub _mpi_end”
o variable : ”ng stub_rank”

The language in which the function that is called from the remote method can be specified in the
lang-spec argument that comes right after the calls keyword. Currently, ”¢”, ”C++” or "FORTRAN” can be
specified.

If omitted, the default ”c¢” is used. If ”FORTRAN” is specified here, the called function must be converted
to the format specified by FortranFormat before it is called.

The attribute values that can be set are described below.

|"description" |A character string that explains this remote function.
|Any character string can be used.

Requi red [The remote function object file (".0").
This specifies the object file (".0") that stores the functions used by the remote
function.

[calcOrder [Calculation order.

The cost of executing the remote function can be specified here in arbitrary
expression form.

[Backend [This specifies the backend at run time.

"MP1” Or "BLACS” can be specified.
If omitted, no backend is used.

|Language |The programming language in which the remote function is written.

”C”, "C++” Or "FORTRAN” can be specified.
If omitted, the default value is ”c”.

[Shrink [Specify whether or not shrinking is enabled.

If "yes” is specified, shrinking is applied to the array elements.
If omitted, shrinking is not done.

e Parameters
The arguments passed to the remote function or remote method are written with the following syntax.
[mode-spec] [type-spec]| parameter name [[dimension[:range]]+
Note: A scalar variable cannot be used for the parameter of callback function.

Note: The maximum number of the parameter which can be defined as callback function is 32.

|" mode-spec” |parameter mode

IN, OUT, INOUT or WORK can be specified.

"allocate” and ”broadcast” are also available as modifiers for specifying a method for
parameter distribution in MPI and BLACS backends.

< parameter mode >

IN : Client -> Server

ouT : Server -> Client

INOUT: Both "IN" and "OUT"

WorRK : The values are not transmitted, but an area is reserved on the server side.

< parameter mode modifier >

allocate : allocates a memory area for the variable on every node whose rank is not
0.
This specifier can be specified with all mode ("IN", "INOUT", "OUT", "WORK").

broadcast : allocates a memory area for the variable on every node whose rank is
not 0. The value of the variable is broadcasted from the rank(node.
This specifier can be specified with "IN" and "INOUT" mode.

Note: The mode cannot be specified for Callback. A scalar variable cannot be used
for the parameter that specifies the ouT mode.

Note: "allocate" and "broadcast" can be written before or after the mode
keywords("IN", "INOUT", "OUT", "WORK"). If "allocate" and "broadcast" are
omitted, nothing will be done.

Note: "allocate" and "broadcast" are ignored if the backend of the remote method
is neither "MPI" nor "BLACS".

"type-spec”

|Parameter type

char, short, int, long, float, double, string, scomplex, dcomplex Or filename can be
specified.
The char, short, int, long, float and double terms correspond to the respective C

types.
Note: The string term corresponds to char []1. Callback does not specify the type.

Note: There is the example program for filename type variable in Ninf-G package. (
< package directory > /diag/file_test)

|parameter_name

|any character string

Array
specification

The specification of an array of parameters

If the parameter is an array, it is written as "[" + expression + "]|" and its size is
specified. A multidimensional array can be defined with multiple "[" + expression +

Il] n .
Also, the variables used by the argument can be used in the expression.

It is also possible to specify the starting position, ending position and shrinking
interval within "[" + expression + "]" as shown below to define arrays.

"[" + expression (size) + ":" + expression (start position) + "]"

"[" + expression (size) + ":" + expression (start position) + ","
+ expression (ending position) + "]"

"[" + expression (size) + ":" + expression (start position) + ","

nn

+ expression (ending position) + "," + expression (shrinking interval) + "]"

If a shrinking interval is specified and "Shrink" is enabled, shrinking of variable
values is done for transmission and saving.

Note: If "starting positon" is omitted, then it's set to the value of "0".

Note: If "ending positon" is omitted or it's specified "0", then it's set to the value
of "size".

Note: If "shrinking interval" is omitted or it's specified "0", then it's set to the
value of "1".

Note: Shrinking of string type variable is not supported.

e Expressions

Expressions can be used to specify the calculation order and the size of parameter arrays.

It can include constants, other IN mode scalar parameter in the function definition, and some operators.
We provide some operators (+, -, , /, %...). Priority among these operators is same as ANSI C. You
can also use parentheses in expressions.

Examples)

|Arithmetic operations |[10 /2 x5

Three term calculation o % 10 7 5: 2

6.2 Ninf-G IDL syntax

/% program toplevel %/
program: /% empty %/
| declaration list

declaration list:
declaration
| declaration list declaration

declaration:

"Module” IDENTIFIER " ;’

"CompileOptions” STRING ’;’

"Globals” globals_body

"Library” STRING ’;’

"FortranFormat” STRING ’;’
"FortranStringConvention” IDENTIFIER " ;’
"Define” interface definition opt string option list interface body
"DefClass” IDENTIFIER opt _string defclass option list " {’ define list '}’
"Compiler” STRING ’;’

"Linker” STRING ’;’

define list:
/% empty */
| define item
| define list define item

define item:
"DefState” ' {’
| "DefMethod” interface definition opt string
defmethod option list interface body

defmethod option list:
/% empty */
| defmethod option
| defmethod option list defmethod option

defmethod option:
calcorder

defclass option list:
/x empty */
| defclass option
| defclass option list defclass option

defclass option:
required

| backend

| shrink
| language

option list:
/% empty */
| decl option
| option list decl option

dec!| option:
required

backend
shrink
calcorder
language

interface definition:
IDENTIFIER ’ (° parameter list ')’
| IDENTIFIER ’ (' parameter callback list ’)’
| IDENTIFIER ' (" callback_list ")’

callback list:
callback
| callback list ’,” callback

’

parameter callback list:
parameter list ’,’ callback

| parameter callback list ', callback

’

parameter list:
/% empty */
| parameter
| parameter list ', parameter

’

cal lback:
IDENTIFIER * (’ parameter list ')’

’

parameter:
decl specifier declarator

decl| specifier:
mode specifier type specifier
| type specifier mode specifier
| type specifier mode specifier type specifier

type specifier:
TYPE
| TYPE TYPE
| TYPE TYPE TYPE

mode specifier:
MODE
| MODE DISTMODE
| DISTMODE MODE

declarator:
IDENTIFIER
| > declarator ')’
| declarator '[’expr_or _null ']
| declarator [’ expr_or_null ’:’ range spec ']’
| 7%’ declarator

’

range_spec:
expr /% upper limit %/
| expr ’,’ expr /% lower limit and upper limit %/
| expr 7,” expr ’,’ expr /% lower, upper and step */
opt string:
/% empty */
| STRING
required:

"Required” STRING

’

backend:

"Backend” STRING

shrink:

“Shrink” STRING

’

language:
"Language” STRING

calcorder:
"CalcOrder” expr

interface body:
"{” /% C statements %/ '}’

| "Calls” opt_string

globals body:
"{" /% C statements %/ '}’

id_

list: IDENTIFIER
| id list’

,” IDENTIFIER
| /% empty %/

/% index description %/
expr_or null:

expr
| /* empty */
expr:
unary_expr
expr /' expr
expr % expr
expr '+ expr
expr ' =" expr
expr %' expr
expr ' 7 expr
expr < expr
expr "<=" expr
expr ">’ expr
expr ">=" expr
expr "1=" expr
expr "==" expr
expr ' ? expr
unary_expr:
primary expr
| 7% expr
| 7-" expr

primary expr:

/%
/%
/%
/%
/%
/%

6.3 IDL sample

primary expr ' [’

| IDENTIFIE
| CONSTANT
| C expr

TYPE = int,

MODE = IN, OUT,

R
,)1

char,

expr

expr "1

IDENTIFIER * (C id_lis

short, long, long float,

INOUT, WORK x/

DISTMODE = allocate broadcast */
IDENTIFIER = name */

CONSTANT = integer
STRING = 7. ..

” */

literals,

floating point

ty), 7;1

double string scomplex dcomplex filename %/

literals x/

e Function version (one method only)

idl-sample /function/sample.idl

e Object version (multiple methods)

idl -sample /object/sample obj.idl

e samples from diagnostic program in Ninf-G package.

o data types
o filename type

o callback type
o shrink arguments/results

o session cancel

e MPI sample
o PI with MPI
"PI" is a sample program in Ninf-G package.

o data types test with MPI

e samples from users.
Followings are IDL files used by Ninf-G users.

o users-samplel.idl
o users-sampleZ.idl
o users-sampled.idl
o users-sample4.idl

6.4 Example of output results

e sample.idl processing results(IDL sample 1 from section 6.3)

idl-sample /function/sample.mak(Makefile)
idl-sample /function/ stub sin.c
idl-sample/function/ stub mmul.c
idl-sample /function/ stub mmul2.c
idl-sample /function/ stub FFT.c

e sample_obj.idl processing results (IDL sample 2 from section 6.3)

idl-sample /object/sample object.mak(Makefile)
id]l-sample /object/ stub sample object.c

last update : $Date: 2007/07/10 09:17:42 §

7. GridRPC API Reference Manual

This section lists and gives you information about all Ninf-G APL

API Index

e Initialization and finalization
e Handle

e Session Invocation

e Argument Stack

e Session Wait
[}
[}
[}
[}

Session Control
Errors

Others

Server side

Ninf-G Client initialization and finalization API

e grpc initialize()

e grpc finalize()

e grpc config file read np()

Ninf-G Handle API

| type |operation [array [default [attr | API

lfunction [initialize lerpe function handle init()

lfunction [initialize lattr |grpc function handle init with attr np()
lfunction [initialize |default lerpe function handle default()

lfunction |destruct lerpe function handle destruct()

lfunction [initialize [array lerpe function handle array init np()
|function |initialize |array |attr lerpe function handle array init with attr np()

lfunction [initialize |array |default lerpe function handle array default np()

function [destruct [array lerpe function handle array destruct np()

lfunction [get_attr lerpe function handle get attr np()

lfunction |get_handle lerpe function handle get from session np()

lfunction [get_handle lerpc get handle()

lfunction [perror lerpe function handle perror np()

lfunction |get_error lerpe function handle get error np()

|function |is_ready larpe function handle is ready np()

lobject [initialize larpe object handle init np()

lobject [initialize lattr [grpc object handle init with attr np()
lobject [initialize |default larpe object handle default np()

lobject |destruct larpc object handle destruct np()

lobject [initialize |array lerpe object handle array init np()

lobject [initialize [array lattr [grpc object handle array init with attr np()
lobject [initialize [array |default lerpe object handle array default np()

lobject [destruct [array lerpe object handle array destruct np()

lobject [get_attr lerpc obiect handle get attr np()

lobject [get_handle lerpc obiect handle get from session np()
lobject [perror lerpe obiect handle perror np()

lobject [get_error lerpc obiect handle get error np()

lobject [is_ready lerpe obiect handle is ready np()

| type |operation| API

lattribute [initialize |[grpc handle attr initialize np()

lattribute [destruct |grpc handle attr destruct np()

lattribute |get larpc handle attr get np()
lattribute [set larpc handle attr set np()
lattribute [release [grpc handle attr release np()

Ninf-G Session Invocation API

| type |attr |arg_stack |async | API

|function larpc call()

|function lasync |groc call async()

|function |arg_stack larpc call arg stack()

|function larg_stack |async |grpc call arg stack async()

|function M larpc call with attr np()

|function M lasync |grpc call async with attr np()

[function [attr |arg_stack larpc call arg stack with attr np()
[function [attr |arg_stack |async |grpc call arg stack async with attr np()
|0bject larpc_invoke np()

|0bject lasync |grpc invoke async np()

|0bject |arg_stack larpc invoke arg stack np()

|0bject larg_stack |async |grpc invoke arg stack async np()
lobject fattr larpc invoke with attr np()

|0bject M lasync |grpc invoke async with attr np()
lobject [attr |arg_stack larpc invoke arg stack with attr np()
lobject [attr |arg_stack |async |grpc invoke arg stack asvnc with attr np()

| type |operation| API

lattribute [initialize [grpc session attr initialize np()

lattribute [initialize |grpc session attr initialize with object handle np()

lattribute [destruct [grpc session attr destruct np()

lattribute |get lerpe session attr get np()
lattribute [set lerpe session attr set np()
lattribute [release [grpc session attr release np()

Ninf-G Argument Stack API

grpc_arg stack new()

grpc arg stack destruct()
grpc arg stack push arg()
grpc arg stack pop arg()

Ninf-G Session Wait API

e grpc wait()
e grpc wait all()

e grpc wait any()
e grpc wait and()

e grpc wait or()
Ninf-G Session Control API

grpc_cancel()

grpc _cancel all()

grpc probe()

grpc_probe or()

grpc_session info get np()

grpc session info release np()

grpc _session info set threshold np()
grpc_session info remove np()

grpc get error()

Ninf-G Errors API

grpc_error string()
grpc_perror np()

grpc get failed sessionid()
grpc last error get np()

Ninf-G Others API

e grpc signal handler set np()
Ninf-G Server side API
e grpc is canceled np()

For Backward Compatibility API (Not recommend)

e grpc get info np()
e grpc get last info np()

e grpc_get_last_error np()

last update : $Date: 2006/02/13 08:06:40 $

NAME
grpc_initialize - Initializes Ninf-G.

SYNOPSIS

grpc_error_t grpc_initialize(char %config file name)

ARGUMENTS

char *config file name
The configuration file for the client

DESCRIPTION

The grpc_initialize() function initializes Ninf-G and the Globus Toolkit used by Ninf-G. The configuration
file specified by config file name is read and the values are saved in global variables within Ninf-G.

If NULL or an empty string is specified in config _file name , the configuration file specified by the
NG_CONFIG_FILE environment variable is used as the configuration file.

If the NG_CONFIG_FILE environment variable is also undefined or an empty string, then $HOME/.ngconf is
used as the configuration file.

Signal

In its implementation, Ninf-G Client uses SIGINT, SIGTERM and SIGHUP. When a Ninf-G Client catches
one of them, it cancels all outstanding sessions, destructs all function/object handles, then exits.

Attention

grpc_initialize() overwrites signal handlers of signals used by Ninf-G Client and grpc_finalize() restores them.

Ninf-G Client may not work correctly if signal() or sigaction() system call is called between grpc_initialize()
and grpc_finalize(). Instead, grpc_signal_handler_set_np() should be used for registering signal handlers.

Ninf-G Client compiled with pthread flavor may not work correctly if a thread is created prior to
grpc_initialize() or some signals are removed from signal mask in each thread.

This function is MT -unsafe.

RETURN VALUE

If successful, GRPC NO ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC CONFIGFILE NOT FOUND
The configuration file does not exist.
The configuration file could not be read.
GRPC CONFIGFILE ERROR
The content of the configuration file is invalid.
GRPC_ALREADY INITIALIZED
Ninf-G is already initialized.
GRPC OTHER ERROR CODE
Internal error detected.

last update : $Date: 2006/02/22 03:08:14 $

NAME

grpc_finalize - Executes the Ninf-G end processing.

SYNOPSIS

grpc_error_t grpc_finalize()

DESCRIPTION

The grpc_finalize() function performs the processing for terminating Ninf-G.

All outstanding jobs are canceled and resources used by Ninf-G are released. The cancellation procedure
includes end processing for the Globus Toolkit.

This function is MT -unsafe.

RETURN VALUE

If successful, GRPC NO_ERROR is returned. In the case of an error, Error code is returned

ERRORS

GRPC_NOT INITIALIZED

GRPC client is not initialized yet.
GRPC OTHER ERROR CODE

Internal error detected.

last update : $Date: 2005/10/25 02:01:04 §

NAME

grpc_config file read np - Reads the configuration file.

SYNOPSIS

grpc_error_t grpc config file read np(char xconfig file name)

ARGUMENTS

char *config file name
The configuration file for the client

DESCRIPTION

The grpc_config_file_read_np() function reads the configuration file and changes the configuration of the
running environment of the Ninf-G Client dynamically.

This function can be used for dynamic addition of the information about new computing resources which were
not known at the startup time.

Once this function is called, the new configuration is effective for newly created function/object handles,
i.e. existing handles keep their old configuration.

This function does not updates <CLIENT> sections. In each section, if an attribute value is not specified,
the default value is used.

As same as grpc_initialize() function, if NULL or an empty string is specified in config_file_name, the
configuration file specified by the NG_CONFIG_FILE environment variable is used as the configuration file.

If the NG_CONFIG_FILE environment variable is also undefined or an empty string, then $HOME/.ngconf is
used as the configuration file.

This function is M T -safe.

Note: No information will be discarded by this function. Only the addition and modification of the
configuration are performed.

RETURN VALUE

If successful, GRPC NO ERROR is returned. In the case of an error, an error code is returned.

ERRORS

GRPC_NOT_INITIALIZED
GRPC client is not initialized yet.
GRPC CONFIGFILE NOT FOUND
The configuration file does not exist.
The configuration file could not be read.
GRPC CONFIGFILE ERROR
The content of the configuration file is invalid.
GRPC OTHER ERROR CODE
Internal error detected.

last update : $Date: 2005/07/11 08:13:35 $

NAME

grpc_function handle_init - Initializes a function handle.

SYNOPSIS

grpc_error_t grpc_function handle init(grpc_function handle t %handle, char xserver name, char xfunc_name)

ARGUMENTS

grpc_function handle t *handle

The function handle to be initialized
char xserver name

The host name (resource manager contact) of the remote machine.
char *func name

The function to be executed on the remote machine

DESCRIPTION

The grpc_function_handle_init() function initializes a function handle.

Every Globus Toolkit GRAM resource manager contact can be specified as a server name argument.
Resource manager contact can be one of the followings:

host name

host name:port number

host name:port number/jobmanager

host name/jobmanager

host name:/jobmanager

host name::subject

host name:port number:subject

host name/jobmanager:subject

host name: /jobmanager:subject

host name:port number/jobmanager:subject

If a user defines tag name in <SERVER> section, tag name can be specified in the host name of the Resource
Manager Contact in server name argument.

The API searches corresponding tag name in a client configuration file. If the tag name is not found, the API
searches corresponding server name. The first match will be selected if multiple sections have the same host
name.

This function is MT -safe.

RETURN VALUE

If successful, GRPC NO_ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC_NOT_INITIALIZED
GRPC client is not initialized yet.
GRPC_SERVER NOT_FOUND

GRPC client cannot find any server.
GRPC FUNCTION NOT FOUND

GRPC client cannot find the function on the default server.
GRPC_RPC_REFUSED

GRPC server refused the initialization.
GRPC OTHER ERROR CODE

Internal error detected.

last update : $Date: 2006/01/16 09:39:26 $

NAME
grpc_function handle init with attr np - grpc_function handle init with attr np - Initializes a function handle.

SYNOPSIS

grpc_error_t grpc_function handle init with attr np(grpc_function handle t *handle, grpc _handle attr t np
*attr)

ARGUMENTS

grpc function handle t *handle

The function handle to be initialized
grpc_handle attr t np *attr

The attributes of the handle

DESCRIPTION

The grpc_function_handle_init_with_attr np() function initializes a function handle.

This function is MT -safe.

RETURN VALUE

If successful, GRPC NO_ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC NOT INITIALIZED
GRPC client is not initialized yet.
GRPC SERVER NOT FOUND
GRPC client cannot find any server.
GRPC FUNCTION NOT FOUND
GRPC client cannot find the function on the default server.
GRPC RPC REFUSED
GRPC server refused the initialization.
GRPC OTHER ERROR CODE
Internal error detected.

last update : $Date: 2005/10/25 02:01:04 §

NAME

grpc_function_handle default - Initializes a function handle.

SYNOPSIS

grpc_error_t grpc_function handle default(grpc_function handle t *handle, char xfunc_name)

ARGUMENTS

grpc_function handle t *handle
The function handle to be initialized
char xfunc_name
The function to be executed on the remote machine

DESCRIPTION

The grpc_function_handle_default() function initializes a function handle.
For the remote host name, the default remote host name specified in the configuration file is used.

This function is MT -safe.

RETURN VALUE

If successful, GRPC NO ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC NOT INITIALIZED

GRPC client is not initialized yet.
GRPC SERVER NOT FOUND

GRPC client cannot find any server.
GRPC_FUNCTION_NOT_FOUND

GRPC client cannot find the function on the default server.
GRPC RPC REFUSED

GRPC server refused the initialization.
GRPC OTHER ERROR CODE

Internal error detected.

last update : $Date: 2005/10/25 02:01:04 $

NAME

grpc_function handle destruct - Destructs a function handle.

SYNOPSIS

grpc_error_t grpc_function handle destruct(grpc_function handle t *handle)

ARGUMENTS

grpc_function handle t *handle

The function handle to be destructed

DESCRIPTION

The grpc_function_handle_destruct() function destructs a function handle.

This function is MT -safe.

RETURN VALUE

If successful, GRPC NO_ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC NOT INITIALIZED
GRPC client is not initialized yet.
GRPC INVALID FUNCTION HANDLE
Function handle specified by handle is invalid.
GRPC TIMEOUT NP
Timeout occurred in session.
GRPC OTHER ERROR CODE
Internal error detected.

last update : $Date: 2005/07/11 07:11:24 §

NAME

grpc_function handle array init_np - Initializes a function handle.

SYNOPSIS

grpc_error_t grpc_function handle array init np(grpc_function handle t %handles, size t nhandles, char
*server_name, char *func_name)

ARGUMENTS

grpc function handle t *handles
The function handle to be initialized
size t nhandles
The number of function handles to be initialized
char xserver name
The host name (resource manager contact) of the remote machine.
char *func name
Function to be executed on the remote machine

DESCRIPTION

The grpc_function_handle_array_init_np() function initializes the function handles.

The server name argument can be specified as the same way with server name argument in
grpc_function_handle_init().

This function is MT -safe.

RETURN VALUE

If successful, GRPC NO_ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC NOT INITIALIZED
GRPC client is not initialized yet.
GRPC SERVER NOT FOUND
GRPC client cannot find any server.
GRPC FUNCTION NOT FOUND
GRPC client cannot find the function on the default server.
GRPC RPC REFUSED
GRPC server refused the initialization.
GRPC OTHER ERROR CODE
Internal error detected.

last update : $Date: 2005/10/25 02:01:04 §

NAME

grpc_function handle array init with attr np - Initializes a function handle

SYNOPSIS

grpc_error_t grpc_function handle array init with attr np(grpc_function handle t %handles, size t nhandles,
grpc_handle attr t np *attr)

ARGUMENTS

grpc function handle t *handles

The function handle to be initialized
size t nhandles

The number of function handles to be initialized
grpc_handle attr t np *attr

The handle attributes

DESCRIPTION

The grpc_function_handle_array_init_with_attr() initializes a function handle.

This function is MT -safe.

RETURN VALUE

If successful, GRPC NO _ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC NOT INITIALIZED
GRPC client is not initialized yet.
GRPC SERVER NOT FOUND
GRPC client cannot find any server.
GRPC FUNCTION NOT FOUND
GRPC client cannot find the function on the default server.
GRPC RPC REFUSED
GRPC server refused the initialization.
GRPC OTHER ERROR CODE
Internal error detected.

last update : $Date: 2005/10/25 02:01:04 $

NAME

grpc_function handle array default np - Initializes function handle.

SYNOPSIS

grpc_error_t grpc_function handle array default np(grpc_function handle t %handles, size t nhandles, char
*func_name)

ARGUMENTS

grpc function handle t *handles

The function handle to be initialized
size t nhandles

The number of function handles to be initialized
char xfunc_name

The function to be executed on the remote host

DESCRIPTION

The grpc_function_handle_default_np() function initializes the function handle.
For the remote machine host name, the default remote host name specified in the configuration file is
used.

This function is MT -safe.

RETURN VALUE

If successful, GRPC NO_ERROR is returned. In the case of an error, Error code is returned

ERRORS

GRPC NOT INITIALIZED
GRPC client is not initialized yet.
GRPC SERVER NOT FOUND
GRPC client cannot find any server.
GRPC FUNCTION NOT FOUND
GRPC client cannot find the function on the default server.
GRPC RPC REFUSED
GRPC server refused the initialization.
GRPC OTHER ERROR CODE
Internal error detected.

last update : $Date: 2005/10/25 02:01:04 $

NAME

grpc_function handle array destruct np - Destructs a function handle.

SYNOPSIS

grpc_error_t grpc_function handle array destruct np(grpc_function handle t *handles, size t nhandles)

ARGUMENTS

grpc_function handle t *handles
The function handle to be destructed

size t nhandles
The number of function handles to be initialized

DESCRIPTION

The grpc_function_handle_array_destruct_np() function destructs a function handle.

This function is MT -safe.

RETURN VALUE

If successful, GRPC NO _ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC NOT INITIALIZED
GRPC client is not initialized yet.
GRPC INVALID FUNCTION HANDLE
Function handle specified by handle is invalid.
GRPC TIMEOUT NP
Timeout occurred in session.
GRPC OTHER ERROR CODE
Internal error detected.

last update : $Date: 2005/07/11 07:11:24 $

NAME

grpc_function handle get attr np - (Gets handle attributes.

SYNOPSIS

grpc_error_t grpc_function handle get attr np(grpc_function handle t xhandle, grpc handle attr t np *attr)

ARGUMENTS

grpc_function handle t *handle
The function handle

grpc_handle attr t np *attr
The handle attributes

DESCRIPTION

The grpc_function_handle_get_attr np() function returns handle attributes for the handle.
This function is MT -safe.

RETURN VALUE

If successful, GRPC NO _ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC NOT INITIALIZED

GRPC client is not initialized yet.
GRPC INVALID FUNCTION HANDLE

Function handle specified by handle is invalid.
GRPC OTHER ERROR CODE

Internal error detected.

last update : $Date: 2005/07/11 07:11:24 §

NAME

grpc_function handle get from session np - Gets a function handle

SYNOPSIS

grpc_error_t grpc_function handle get from session np(grpc_function handle t *xhandle, grpc_sessionid t
session_id)

ARGUMENTS

grpc function handle t #*%handle
The function handle

grpc_sessionid t session id
The session ID

DESCRIPTION

The grpc_function_handle_get_from_session_np() function returns a function handle for the specified
session ID.

If the value specified in session_id is ID of session of Object Handle, this API returns error.

This function is MT -safe.

RETURN VALUE

If successful, GRPC NO ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC NOT INITIALIZED
GRPC client is not initialized yet.
GRPC INVALID SESSION ID
Session ID is not valid.
GRPC_OTHER ERROR_CODE
Internal error detected.

last update : $Date: 2005/07/11 07:11:24 §

NAME

grpc_get_handle - Gets a function handle.

SYNOPSIS

grpc_error_t grpc_get handle(grpc_function handle t xxhandle, grpc_sessionid t session_id)

ARGUMENTS

grpc_function handle t *xhandle
The function handle

grpc_sessionid t session id
The session ID

DESCRIPTION

The grpc_get_handle() function returns a function handle for the session specified by the session ID.
If the value specified in session_id is ID of session of Object Handle, this API returns error.

In Ninf-G, there are grpc_function_handle_get_from _session_np() which gets a function handle, and
grpc_object_handle_get_from_session_np() which gets an object handle.

The function of grpc_get_handle() and grpc_function_handle_get_from_session_np() is the same.

This function is MT -safe.

RETURN VALUE

If successful, GRPC NO ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC NOT INITIALIZED

GRPC client is not initialized yet.
GRPC INVALID SESSION ID

Session ID is not valid.
GRPC_OTHER ERROR_CODE

Internal error detected.

last update : $Date: 2005/07/11 07:11:24 §

NAME

grpc_function handle perror_np - Displays an error.

SYNOPSIS

grpc_error_t grpc_function handle perror np(grpc_function handle t *handle, char %str)

ARGUMENTS

grpc_function handle t *handle
The function handle

char *str

The character string to be displayed

DESCRIPTION

The grpc_function_handle_perror_np() function displays the function handle error in standard output.

This function is MT -safe.

RETURN VALUE

If successful, GRPC NO _ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC NOT INITIALIZED

GRPC client is not initialized yet.
GRPC INVALID FUNCTION HANDLE

Function handle specified by handle is invalid.
GRPC OTHER ERROR CODE

Internal error detected.

last update : $Date: 2005/07/11 07:11:24 §

NAME

grpc_function _handle get error_np - Returns the error code generated by the handle.

SYNOPSIS

grpc_error_t grpc_function handle get error np(grpc_function handle t xhandle)

ARGUMENTS

grpc_function handle t *handle

The function handle

DESCRIPTION

The grpc_function_handle_get_error np() function returns the error code that was generated in the handle
specified by function handle.

This function is MT -safe.

RETURN VALUE

If successful, GRPC NO ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC_NOT_INITIALIZED
GRPC client is not initialized yet.
GRPC INVALID FUNCTION HANDLE
Function handle specified by handle is invalid.
GRPC OTHER ERROR CODE
Internal error detected.

last update : $Date: 2005/07/11 07:11:24 §

NAME
grpc_function handle is ready np - Checks whether the specified handle is ready or not

SYNOPSIS

grpc_error_t grpc_function handle is ready np(grpc_function handle t *handle)

ARGUMENTS

grpc_function handle t *handle

The function handle

DESCRIPTION

The grpc_function_handle_is_ready_np() function returns whether the specified handle is ready or not.

This function is MT -safe.

RETURN VALUE

If the function handle is ready, GRPC NO ERROR is returned. In the case of an error, Error code is
returned.

ERRORS

GRPC_NOT_INITIALIZED
GRPC client is not initialized yet.
GRPC INVALID FUNCTION HANDLE
Function handle specified by handle is invalid.
GRPC OTHER ERROR CODE
Internal error detected.

last update : $Date: 2005/07/11 07:11:24 §

NAME
grpc_object handle_init_np - grpc_object handle init np - Initializes an object handle.

SYNOPSIS

grpc_error_t grpc_object handle init np(grpc object handle t np *handle, char xserver name, char
*class_name)

ARGUMENTS

grpc object handle t np *handle

The object handle to be initialized
char *server _name

The host name (resource manager contact) of the remote machine.
char *class name

The class to be executed on the remote machine

DESCRIPTION

The grpc_object_handle_init_np() function initializes an object handle.

The server name argument can be specified as the same way with server name argument in
grpc_function_handle_init().

This function is MT -safe.

RETURN VALUE

If successful, GRPC NO_ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC NOT INITIALIZED
GRPC client is not initialized yet.
GRPC SERVER NOT FOUND
GRPC client cannot find any server.
GRPC FUNCTION NOT FOUND
GRPC client cannot find the function on the default server.
GRPC RPC REFUSED
GRPC server refused the initialization.
GRPC OTHER ERROR CODE
Internal error detected.

last update : $Date: 2005/10/25 02:01:04 $

NAME

grpc_object _handle init with attr np - Initializes an object handle.

SYNOPSIS

grpc_error_t grpc_object handle init with attr np(grpc_object handle t np *handle, grpc_handle attr t np
*attr)

ARGUMENTS

grpc object handle t np *handle

The object handle to be initialized
grpc_handle attr t np *attr

The handle attributes

DESCRIPTION

The grpc_object_handle_init_with_attr np() function initializes an object handle.

This function is MT -safe.

RETURN VALUE

If successful, GRPC NO_ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC NOT INITIALIZED
GRPC client is not initialized yet.
GRPC SERVER NOT FOUND
GRPC client cannot find any server.
GRPC FUNCTION NOT FOUND
GRPC client cannot find the function on the default server.
GRPC RPC REFUSED
GRPC server refused the initialization.
GRPC OTHER ERROR CODE
Internal error detected.

last update : $Date: 2005/10/25 02:01:04 §

NAME

grpc_object _handle default np - grpc_object handle default np - Initializes an object handle.

SYNOPSIS

grpc_error_t grpc_object handle default np(grpc _object handle t np *handle, char *class_name)

ARGUMENTS

grpc_object handle t np *handle
The object handle to be initialized
char *class name
The class to be executed on the remote machine

DESCRIPTION

The grpc_object_handle_default_np() function initializes object handles.
For the remote machine host name, the default remote host name specified in the
configuration file is used.

This function is MT -safe.

RETURN VALUE

If successful, GRPC NO_ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC NOT INITIALIZED
GRPC client is not initialized yet.
GRPC SERVER NOT FOUND
GRPC client cannot find any server.
GRPC FUNCTION NOT FOUND
GRPC client cannot find the function on the default server.
GRPC RPC REFUSED
GRPC server refused the initialization.
GRPC OTHER ERROR CODE
Internal error detected.

last update : $Date: 2005/10/25 02:01:04 $

NAME

grpc_object _handle destruct np - grpc_object handle destruct np - Destructs an object handle

SYNOPSIS

grpc_error_t grpc_object handle destruct np(grpc_object handle t np xhandle)

ARGUMENTS

grpc_object handle t np *handle
The object handle to be destructed

DESCRIPTION

The grpc_object_handle_destruct_np() function destructs an object handle.

This function is MT -safe.

RETURN VALUE

If successful, GRPC NO_ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC NOT INITIALIZED
GRPC client is not initialized yet.
GRPC INVALID OBJECT HANDLE NP
Object handle specified by handle is invalid.
GRPC OTHER ERROR CODE
Internal error detected.

last update : $Date: 2005/07/11 07:11:24 $

NAME
grpc_object handle array init_np - grpc_object handle array init np - Initializes an object handle.

SYNOPSIS

grpc_error_t grpc_object handle array init np(grpc_object handle t np xhandles, size t nhandles, char
*server_name, char *class_name)

ARGUMENTS

grpc object handle t np *handles
The object handle to be initialized
size t nhandles
The number of object handles to be initialized
char xserver name
The host name (resource manager contact) of the remote machine.
char *class name
The class to be executed on the remote machine

DESCRIPTION

The grpc_object_handle_array_init_np() initializes the object handles.

The server name argument can be specified as the same way with server name argument in
grpc_function_handle_init().

This function is MT -safe.

RETURN VALUE

If successful, GRPC NO_ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC NOT INITIALIZED
GRPC client is not initialized yet.
GRPC SERVER NOT FOUND
GRPC client cannot find any server.
GRPC FUNCTION NOT FOUND
GRPC client cannot find the function on the default server.
GRPC RPC REFUSED
GRPC server refused the initialization.
GRPC OTHER ERROR CODE
Internal error detected.

last update : $Date: 2005/10/25 02:01:04 §

NAME

grpc_object handle array init with attr np - grpc_object handle array init with attr np - Initializes an object
handle.

SYNOPSIS

grpc_error_t grpc_object handle array init with attr np(grpc _object handle t np xhandles, size t nhandles,
grpc_handle attr t np *attr)

ARGUMENTS

grpc_object handle t np *handles

The object handle to be initialized
size t nhandles

The number of object handles to be initialized
grpc_handle attr t np *attr

The handle attributes

DESCRIPTION

The grpc_object_handle_array_init_with_attr_np() function initializes an object handle.

This function is MT -safe.

RETURN VALUE

If successful, GRPC NO ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC NOT INITIALIZED

GRPC client is not initialized yet.
GRPC SERVER NOT FOUND

GRPC client cannot find any server.
GRPC_FUNCTION_NOT_FOUND

GRPC client cannot find the function on the default server.
GRPC RPC REFUSED

GRPC server refused the initialization.
GRPC OTHER ERROR CODE

Internal error detected.

last update : $Date: 2005/10/25 02:01:04 $

NAME

grpc_object _handle array default np - grpc_object handle array default np - Initializes an object handle.

SYNOPSIS

grpc_error_t grpc_object handle array default np(grpc object handle t np xhandles, size t nhandles, char
*class_name)

ARGUMENTS

grpc object handle t np *handles

The object handle to be initialized
size t nhandles

The number of object handles to be initialized
char *class name

The class to be executed on the remote machine

DESCRIPTION

The grpc_object_handle_array_default_np() function initializes an object handle.
For the remote machine host name, the default remote host name specified in the configuration file is
used.

This function is MT -safe.

RETURN VALUE

If successful, GRPC NO_ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC NOT INITIALIZED
GRPC client is not initialized yet.
GRPC SERVER NOT FOUND
GRPC client cannot find any server.
GRPC FUNCTION NOT FOUND
GRPC client cannot find the function on the default server.
GRPC RPC REFUSED
GRPC server refused the initialization.
GRPC OTHER ERROR CODE
Internal error detected.

last update : $Date: 2005/10/25 02:01:04 $

NAME

grpc_object _handle array destruct np - grpc_object handle array destruct np - Destructs an object handle.

SYNOPSIS

grpc_error_t grpc_object handle array destruct np(grpc _object handle t np *handles, size t nhandles)

ARGUMENTS

grpc_object handle t np *handles
The object handle to be destructed

size t nhandles
The number of object handles to be initialized

DESCRIPTION

The grpc_object_handle_array_destruct_np()function destructs an object handle.

This function is MT -safe.

RETURN VALUE

If successful, GRPC NO _ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC NOT INITIALIZED

GRPC client is not initialized yet.
GRPC INVALID OBJECT HANDLE NP

Object handle specified by handle is invalid.
GRPC OTHER ERROR CODE

Internal error detected.

last update : $Date: 2005/07/11 07:11:24 §

NAME

grpc _object handle get attr np - (Gets handle attributes.

SYNOPSIS

grpc_error_t grpc_object handle get attr np(grpc_object handle t np *handle, grpc_handle attr_t np *attr)

ARGUMENTS

grpc_object handle t np *handle
The object handle

grpc_handle attr t np *attr
The handle attributes

DESCRIPTION

The grpc_object_handle_get_attr_np() function returns handle attributes for the handle.
This function is MT -safe.

RETURN VALUE

If successful, GRPC NO _ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC NOT INITIALIZED

GRPC client is not initialized yet.
GRPC INVALID OBJECT HANDLE NP

Object handle specified by handle is invalid.
GRPC OTHER ERROR CODE

Internal error detected.

last update : $Date: 2005/07/11 07:11:24 §

NAME

grpc_object _handle get from session np - Gets an object handle.

SYNOPSIS

grpc_error_t grpc_object handle get from session np(grpc object handle t np *xhandle, grpc_sessionid t
session_id)

ARGUMENTS

grpc object handle t np **xhandle
The object handle

grpc_sessionid t session id
The session ID

DESCRIPTION

The grpc_object_handle_get_from_session_np()function returns the object handle for the session
specified by the session ID.

If the value specified in session_id is ID of session of Function Handle, this API returns error.

This function is MT -safe.

RETURN VALUE

If successful, GRPC NO ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC NOT INITIALIZED
GRPC client is not initialized yet.
GRPC INVALID SESSION ID
Session ID is not valid.
GRPC_OTHER ERROR_CODE
Internal error detected.

last update : $Date: 2005/07/11 07:11:24 §

NAME

grpc_object handle perror np - Insplays the error.

SYNOPSIS

grpc_error_t grpc_object handle perror _np(grpc_object handle t np *handle, char xstr)

ARGUMENTS

grpc_object handle t np *handle
The object handle

char *str

The character string to be displayed

DESCRIPTION

The grpc_object_handle_perror_np() function displays the error for the object handle in the standard
error output.

This function is MT -safe.

RETURN VALUE

If successful, GRPC NO ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC NOT INITIALIZED

GRPC client is not initialized yet.
GRPC INVALID OBJECT HANDLE NP

Object handle specified by handle is invalid.
GRPC_OTHER ERROR_CODE

Internal error detected.

last update : $Date: 2005/07/11 07:11:24 §

NAME
grpc_object _handle get error_np - Returns the error code generated by the handle.

SYNOPSIS

grpc_error_t grpc_object handle get error np(grpc_object handle t np xhandle)

ARGUMENTS

grpc_object handle t np *handle

The object handle

DESCRIPTION

The grpc_object_handle_get_error np() function returns the error code that was generated in the handle
specified by object handle.

This function is MT -safe.

RETURN VALUE

If successful, GRPC NO ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC_NOT_INITIALIZED
GRPC client is not initialized yet.
GRPC INVALID OBJECT HANDLE NP
Object handle specified by handle is invalid.
GRPC OTHER ERROR CODE
Internal error detected.

last update : $Date: 2005/07/11 07:11:24 §

NAME
grpc_object handle is ready np - Checks whether the specified handle is ready or not

SYNOPSIS

grpc_error_t grpc_object handle is _ready np(grpc_object handle t np xhandle)

ARGUMENTS

grpc_object handle t np *handle

The object handle

DESCRIPTION

The grpc_object_handle_is_ready_np() function returns whether the specified handle is ready or not.

This function is MT -safe.

RETURN VALUE

If the object handle is ready, GRPC NO_ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC NOT INITIALIZED
GRPC client is not initialized yet.
GRPC INVALID OBJECT HANDLE NP
Object handle specified by handle is invalid.
GRPC OTHER ERROR CODE
Internal error detected.

last update : $Date: 2005/07/11 07:11:24 $

NAME

grpc_handle attr_initialize np - [nitializes function handle attributes.

SYNOPSIS

grpc_error_t grpc_handle attr _initialize np(grpc_handle attr t np xattr)

ARGUMENTS

grpc_handle attr t np *attr
The function handle attributes to be initialized

DESCRIPTION

The grpc_handle_attr_initialize_np() function initializes function handle attributes.

This function is MT -safe.

RETURN VALUE

If successful, GRPC NO_ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC NOT INITIALIZED

GRPC client is not initialized yet.
GRPC OTHER ERROR CODE

Internal error detected.

last update : $Date: 2005/07/11 07:11:24 $

NAME

grpc_handle attr_destruct _np - Destructs handle attributes.

SYNOPSIS

grpc_error_t grpc_handle attr destruct np(grpc_handle attr t np *attr)

ARGUMENTS

grpc_handle attr t np *attr
The handle attributes to be destructed

DESCRIPTION

The grpc_handle_attr_destruct_np() function destructs handle attributes.

This function is MT -safe.

RETURN VALUE

If successful, GRPC NO_ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC NOT INITIALIZED

GRPC client is not initialized yet.
GRPC OTHER ERROR CODE

Internal error detected.

last update : $Date: 2005/07/11 07:11:24 $

NAME

grpc_handle attr get np - Gets handle attributes.

SYNOPSIS

grpc_error_t grpc_handle attr get np(grpc_handle attr_t np %attr, grpc _handle attr name t np name, void
*xvalue)

ARGUMENTS

grpc handle attr t np *attr

The handle attributes
grpc_handle attr name t np name

The names of the attributes to be get
void xvalue

The values to be get

DESCRIPTION

The grpc_handle_attr_get_np() function returns the values of handle attributes.
See the manual of grpc_handle_attr_set_np() for details of grpc_handle_attr_name_t_np.

Memory area allocated for the attribute value should be released by calling grpc_handle_attr release_np() after
the value was referred.

This function is MT -safe.

RETURN VALUE

If successful, GRPC NO_ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC NOT INITIALIZED

GRPC client is not initialized yet.
GRPC OTHER ERROR CODE

Internal error detected.

last update : $Date: 2005/08/04 02:32:49 $

NAME

grpc_handle_attr_set np - Sets handle attributes.

SYNOPSIS

grpc_error_t grpc_handle attr _set np(grpc_handle attr_t np %attr, grpc _handle attr name t np name, void
*value)

ARGUMENTS

grpc handle attr t np *attr

The handle attributes
grpc_handle attr name t np name

The names of the attributes to be set
void xvalue

The values to be set

typedef enum { /% Format for passing to value %/
GRPC_HANDLE ATTR_HOSTNAME, /* char %/
GRPC_HANDLE ATTR _PORT, /% int %/
GRPC_HANDLE_ATTR_JOBMANAGER, /% char %/
GRPC_HANDLE_ATTR_SUBJECT, /% char %/
GRPC_HANDLE ATTR FUNCNAME, /% char %/
GRPC_HANDLE ATTR_JOBSTARTTIMEOUT, /% int %/
GRPC HANDLE ATTR JOBSTOPTIMEOUT, /% int %/
GRPC_HANDLE ATTR WAIT ARG TRANSFER, /% grpc argument transfer t np %/
GRPC_HANDLE ATTR_QUEUENAME, /% char %/
GRPC HANDLE ATTR MPI NCPUS, /% int %/

} grpc_handle attr name t np;

GRPC_HANDLE_ATTR_HOSTNAME
GRPC HANDLE ATTR PORT
GRPC_HANDLE_ATTR_JOBMANAGER
GRPC_HANDLE_ATTR_SUBJECT
GRPC_HANDLE_ATTR_FUNCNAME

Those are the same as the arguments of the existing grpc_function_handle_init() function.

® GRPC HANDLE ATTR JOBSTARTTIMEOUT
This specifies the time -out value in seconds for when a job is started.
When the grpc_call() function *1 is called and the job has not started, if the time specified by
job_timeout elapses after the job start-up request was issued, then grpc_call() ends with a time-out
error.
If the value 0 is specified, the process continues to wait for the job to start without timing out.

® GRPC_HANDLE ATTR JOBSTOPTIMEOUT

The time out time for job completion is specified in seconds.

If the -1 value is specified, there is no time-out and the process waits until the job stops. If the 0
value is specified, the process doesn't wait for the job to stop.

® GRPC HANDLE ATTR WAIT ARG TRANSFER
This flag specifies whether or not to wait for the transfer of arguments in an asynchronous RPC.
The default is to wait for the transfer.

The value set up with this attribute is shown below.

O GRPC_ARGUMENT TRANSFER WAIT
It waits for the end of transfer argument.
O GRPC_ARGUMENT TRANSFER NOWAIT
It does not wait for the end of transfer argument.
O GRPC ARGUMENT TRANSFER COPY
The copy of an argument is made.
® GRPC HANDLE ATTR QUEUENAME

Target the GRAM job to a queue (class) name as defined by the scheduler at the defined (remote)
resource.

® GRPC HANDLE ATTR MPI NCPUS
This specifies the number of CPUs for MPI function.
DESCRIPTION

The grpc_handle_attr_set_np() function sets the values of handle attributes.

This function is MT -safe.

RETURN VALUE

If successful, GRPC NO_ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC_NOT_INITIALIZED
GRPC client is not initialized yet.
GRPC_OTHER ERROR CODE
Internal error detected.

last update : $Date: 2008/03/12 06:52:30 $

NAME

grpc_handle_attr_release np - frees memory for the handle attribute value.

SYNOPSIS

grpc_error_t grpc_handle attr release np(void *value)

ARGUMENTS

void *value

Pointer to the value obtained by grpc_handle_attr_get_np()

DESCRIPTION

The grpc_handle_attr_release_np() frees memory for the value obtained by grpc_handle_attr_get_np().

This function is MT -safe.

RETURN VALUE

If successful, GRPC NO_ERROR is returned. In the case of an error, an error code is returned.

ERRORS

GRPC NOT INITIALIZED
GRPC client is not initialized yet.
GRPC_OTHER ERROR_CODE
Internal error detected.

last update : $Date: 2005/08/04 02:32:49 $

NAME

grpc_call - Executes an RPC.

SYNOPSIS

grpc_error_t grpc_call(grpc_function handle t xhandle, ...)

ARGUMENTS

grpc_function handle t *handle
The function handle
Other arguments

Arguments that are passed to the function called by RPC

DESCRIPTION

The grpc_call() function calls the function defined by the function handle.
The grpc_call() function is blocked until the called function completes execution.

This function is MT -safe.

RETURN VALUE

If successful, GRPC NO ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC NOT INITIALIZED

GRPC client is not initialized yet.
GRPC SERVER NOT FOUND

GRPC client cannot find the specified server.
GRPC_FUNCTION_NOT_FOUND

GRPC client cannot find the function on the specified server.
GRPC INVALID FUNCTION HANDLE

Function handle specified by handle is invalid.
GRPC RPC REFUSED

RPC invocation was refused by the server, possibly because of a security issue.
GRPC_COMMUNICATION FAILED

Communication with the server failed somehow.
GRPC TIMEOUT NP

Timeout occurred in session.
GRPC OTHER ERROR CODE

Internal error detected.

last update : $Date: 2005/07/11 07:11:24 §

NAME

grpc_call_async - Executes an RPC.

SYNOPSIS

grpc_error_t grpc_call _async(grpc_function handle t %handle, grpc_sessionid t *session_id, ...

ARGUMENTS

grpc_function handle t *handle
The function handle

grpc_sessionid t *session_id
The session 1D

Other arguments

The arguments passed to the function called by the RPC

DESCRIPTION

The grpc_call_async() calls the function defined by the function handle.
The grpc_call_async() does not wait for completion of the called function.

This function is M T -safe.

RETURN VALUE

If successful, GRPC NO_ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC NOT INITIALIZED
GRPC client is not initialized yet.
GRPC_SERVER _NOT_FOUND
GRPC client cannot find the specified server.
GRPC FUNCTION NOT FOUND
GRPC client cannot find the function on the specified server.
GRPC INVALID FUNCTION HANDLE
Function handle specified by handle is invalid.
GRPC_RPC_REFUSED
RPC invocation was refused by the server, possibly because of a security issue.
GRPC COMMUNICATION FAILED
Communication with the server failed somehow.
GRPC TIMEOUT NP
Timeout occurred in session.
GRPC_OTHER ERROR CODE
Internal error detected.

last update : $Date: 2005/11/18 08:19:13 $

NAME

grpc_call_arg stack - Executes an RPC.

SYNOPSIS

int grpc_call _arg stack(grpc_function handle t xhandle, grpc_arg stack t *stack)

ARGUMENTS

grpc_function handle t *handle
The function handle

grpc_arg stack t *stack

The stack that holds the arguments for passing to the function called by the RPC.

DESCRIPTION

The grpc_call_arg_stack() function calls the function defined by the function handle.
The grpc_call_arg_stack() function is blocked until the called function completes execution.

This function is MT -safe.

RETURN VALUE

If successful, 0 is returned. In the case of an error, -1 is returned

ERRORS

GRPC_NOT_INITIALIZED

The grpc_initialize() function has not been executed.
GRPC_OTHER_ERROR_CODE

Internal error detected.

last update : $Date: 2005/07/11 07:11:24 §

NAME

grpc_call_arg stack _async - Executes an RPC.

SYNOPSIS

int grpc_call _arg stack async(grpc_function handle t xhandle, grpc_arg stack t *stack)

ARGUMENTS

grpc_function handle t *handle
The function handle

grpc_arg stack t *stack

The stack for holding the arguments to be passed to the function called by the RPC

DESCRIPTION

The grpc_call_arg_stack_async() function calls the function defined by function handle.
The grpc_call_arg_stack() function does not wait for the execution of the called function to complete.

This function is MT -safe.

RETURN VALUE

If successful, the session ID is returned. In the case of an error, -1 is returned

ERRORS

GRPC_NOT_INITIALIZED

The grpc_initialize() function has not been executed.
GRPC_OTHER_ERROR_CODE

Internal error detected.

last update : $Date: 2005/07/11 07:11:24 §

NAME

grpc_call _with _attr_np - Executes an RPC.

SYNOPSIS

grpc_error_t grpc_call with attr np(grpc_function handle t %handle, grpc_session attr t np *session_ attr,

ARGUMENTS

grpc function handle t *handle
The function handle
grpc_session _attr t np *session attr
The attributes of the session
Other arguments

Arguments that are passed to the function called by RPC

DESCRIPTION

The grpc_call_with_attr_np() function calls the function defined by the function handle.
The grpc_call_with_attr_np() function is blocked until the called function completes execution.

This function is MT -safe.

RETURN VALUE

If successful, GRPC NO ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC NOT INITIALIZED

GRPC client is not initialized yet.
GRPC SERVER NOT FOUND

GRPC client cannot find the specified server.
GRPC_FUNCTION_NOT_FOUND

GRPC client cannot find the function on the specified server.
GRPC INVALID FUNCTION HANDLE

Function handle specified by handle is invalid.
GRPC RPC REFUSED

RPC invocation was refused by the server, possibly because of a security issue.
GRPC_COMMUNICATION FAILED

Communication with the server failed somehow.
GRPC TIMEOUT NP

Timeout occurred in session.
GRPC OTHER ERROR CODE

Internal error detected.

last update : $Date: 2005/07/11 07:11:24 §

NAME

grpc _call async with attr np - Executes an RPC.

SYNOPSIS

grpc_error_t grpc_call _async with attr np(grpc_function handle t *handle, grpc sessionid t *session_id,
grpc_session_attr t np *session_attr, ...)

ARGUMENTS

grpc function handle t *handle

The function handle
grpc_sessionid t *session_id

The session ID
grpc_session attr t np *session attr

The attributes of the session
Other arguments

The arguments passed to the function called by the RPC

DESCRIPTION

The grpc_call_async_with_attr_np() calls the function defined by the function handle.
The grpc_call_async_with_attr np() does not wait for completion of the called function.

This function is M T -safe.

RETURN VALUE

If successful, GRPC NO_ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC NOT INITIALIZED
GRPC client is not initialized yet.
GRPC_SERVER _NOT_FOUND
GRPC client cannot find the specified server.
GRPC FUNCTION NOT FOUND
GRPC client cannot find the function on the specified server.
GRPC INVALID FUNCTION HANDLE
Function handle specified by handle is invalid.
GRPC_RPC_REFUSED
RPC invocation was refused by the server, possibly because of a security issue.
GRPC COMMUNICATION FAILED
Communication with the server failed somehow.
GRPC TIMEOUT NP
Timeout occurred in session.
GRPC_OTHER ERROR CODE
Internal error detected.

last update : $Date: 2005/11/18 08:19:13 $

NAME

grpc call arg stack with attr np - Executes an RPC.

SYNOPSIS

int grpc_call _arg stack with attr np(grpc_function handle t xhandle, grpc_session attr_t np *session attr,
grpc_arg stack t *xstack)

ARGUMENTS

grpc function handle t *handle
The function handle

grpc_session _attr t np *session attr
The attributes of the session
grpc_arg stack t *stack

The stack that holds the arguments for passing to the function called by the RPC.

DESCRIPTION

The grpc_call_arg_stack_with_attr np() function calls the function defined by the function handle.
The grpc_call_arg_stack_with_attr np() function is blocked until the called function completes execution.

This function is MT -safe.

RETURN VALUE

If successful, 0 is returned. In the case of an error, -1 is returned

ERRORS

GRPC_NOT_INITIALIZED

The grpc_initialize() function has not been executed.
GRPC_OTHER_ERROR_CODE

Internal error detected.

last update : $Date: 2005/07/11 07:11:24 §

NAME

grpc call arg stack async with attr np - Executes an RPC.

SYNOPSIS

int grpc_call _arg stack async _with attr np(grpc_function handle t xhandle, grpc_session attr_t np
*session_attr, grpc_arg stack t *stack)

ARGUMENTS

grpc function handle t *handle
The function handle
grpc_session _attr t np *session attr
The attributes of the session
grpc_arg stack t *stack

The stack for holding the arguments to be passed to the function called by the RPC

DESCRIPTION

The grpc_call_arg_stack_async_with_attr_np() function calls the function defined by function handle.
The grpc_call_arg_stack_with_attr_np() function does not wait for the execution of the called function to
complete.

This function is MT -safe.

RETURN VALUE

If successful, the session 1D is returned. In the case of an error, -1 is returned

ERRORS

GRPC_NOT_INITIALIZED

The grpc_initialize() function has not been executed.
GRPC_OTHER_ERROR_CODE

Internal error detected.

last update : $Date: 2005/07/11 07:11:24 §

NAME

grpc_invoke np - Executes an RPC.

SYNOPSIS

grpc_error_t grpc_invoke np(grpc_object handle t np xhandle, char *method name, ...)

ARGUMENTS

grpc_object handle t np *handle
The object handle

char *method name
The method name

Other arguments

Arguments to be passed to the function called by RPC

DESCRIPTION

The grpc_invoke_np() function calls the method defined by the object handle.
The grpc_invoke_np() function is blocked until execution of the called method is completed.

This function is M T -safe.

RETURN VALUE

If successful, GRPC NO_ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC NOT INITIALIZED
GRPC client is not initialized yet.
GRPC_SERVER _NOT_FOUND
GRPC client cannot find the specified server.
GRPC FUNCTION NOT FOUND
GRPC client cannot find the function on the specified server.
GRPC INVALID OBJECT HANDLE NP
Object handle specified by handle is invalid.
GRPC_RPC_REFUSED
RPC invocation was refused by the server, possibly because of a security issue.
GRPC COMMUNICATION FAILED
Communication with the server failed somehow.
GRPC TIMEOUT NP
Timeout occurred in session.
GRPC_OTHER ERROR CODE
Internal error detected.

last update : $Date: 2005/07/11 07:11:24 §

NAME

grpc_invoke async_np - Executes an RPC.

SYNOPSIS

grpc_error_t grpc_invoke async _np(grpc_object handle t np *handle, char *method name, grpc_sessionid t
*session_id, ...)

ARGUMENTS

grpc object handle t np *handle
The object handle

char *method name
The method name

Other arguments

Arguments to be passed to the function called by RPC

DESCRIPTION

The grpc_invoke_async_np() function calls the method defined by the object handle.
The grpc_invoke_async_np() function does not wait for the called method to complete execution.

This function is MT -safe.

RETURN VALUE

If successful, GRPC NO ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC NOT INITIALIZED

GRPC client is not initialized yet.
GRPC SERVER NOT FOUND

GRPC client cannot find the specified server.
GRPC_FUNCTION_NOT_FOUND

GRPC client cannot find the function on the specified server.
GRPC INVALID FUNCTION HANDLE

Function handle specified by handle is invalid.
GRPC RPC REFUSED

RPC invocation was refused by the server, possibly because of a security issue.
GRPC_COMMUNICATION FAILED

Communication with the server failed somehow.
GRPC TIMEOUT NP

Timeout occurred in session.
GRPC OTHER ERROR CODE

Internal error detected.

last update : $Date: 2005/11/18 08:19:13 $

NAME

grpc_invoke arg stack np - Executes an RPC.

SYNOPSIS

int grpc_invoke arg stack np(grpc_object handle t np xhandle, char *method name, grpc_arg stack t *stack)

ARGUMENTS

grpc_object handle t np *handle
The object handle

char *method name
The method name

grpc arg stack t *xstack

The stack for storing arguments to be passed to the function called in the RPC

DESCRIPTION

The grpc_invoke_arg_stack_np() function calls the method defined by the object handle.
The grpc_invoke_arg_stack np() function is blocked until the execution of the called method is
completed.

This function is MT -safe.

RETURN VALUE

If successful, 0 is returned. In the case of an error, -1 is returned.

ERRORS

GRPC_NOT_INITIALIZED
The grpc_initialize() function has not been executed.
GRPC OTHER ERROR CODE
Internal error detected.

last update : $Date: 2005/07/11 07:11:24 $

NAME

grpc_invoke arg stack async_np - Executes an RPC.

SYNOPSIS

int grpc_invoke arg stack async np(grpc_object handle t np *handle, char *method name, grpc_arg stack t
*stack)

ARGUMENTS

grpc object handle t np *handle
The object handle

char *method name
The method name
grpc_arg stack t *stack

The stack for storing arguments to be passed to the function called in the RPC

DESCRIPTION

The grpc_invoke_arg_stack_async_np() function calls the method defined by the object handle.
The grpc_invoke_arg_stack_async_np() function does not wait for the called method to complete
execution.

This function is MT -safe.

RETURN VALUE

If successful, the session ID is returned. In the event of an error, -1 is returned.

ERRORS

GRPC_NOT_INITIALIZED

The grpc_initialize() function has not been executed.
GRPC_OTHER_ERROR_CODE

Internal error detected.

last update : $Date: 2005/07/11 07:11:24 §

NAME

grpc_invoke with attr np - Executes an RPC.

SYNOPSIS

grpc_error_t grpc_invoke with attr np(grpc_object handle t np xhandle, char *method name,
grpc_session_attr t np *session_attr, ...)

ARGUMENTS

grpc object handle t np *handle
The object handle
char *method name
The method name
grpc_session attr t np *session attr
The attributes of the session
Other arguments

Arguments to be passed to the function called by RPC

DESCRIPTION

The grpc_invoke_with_attr_np() function calls the method defined by the object handle.
The grpc_invoke_with_attr np() function is blocked until execution of the called method is completed.

This function is M T -safe.

RETURN VALUE

If successful, GRPC NO_ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC NOT INITIALIZED
GRPC client is not initialized yet.
GRPC_SERVER _NOT_FOUND
GRPC client cannot find the specified server.
GRPC FUNCTION NOT FOUND
GRPC client cannot find the function on the specified server.
GRPC INVALID OBJECT HANDLE NP
Object handle specified by handle is invalid.
GRPC_RPC_REFUSED
RPC invocation was refused by the server, possibly because of a security issue.
GRPC COMMUNICATION FAILED
Communication with the server failed somehow.
GRPC TIMEOUT NP
Timeout occurred in session.
GRPC_OTHER ERROR CODE
Internal error detected.

last update : $Date: 2005/07/11 07:11:24 §

NAME

grpc_invoke async with attr np - Executes an RPC.

SYNOPSIS

grpc_error_t grpc_invoke async with attr np(grpc_object handle t np xhandle, char *method name,
grpc_sessionid t *session_id, grpc_session attr_t np *session attr, ...)

ARGUMENTS

grpc object handle t np *handle
The object handle
char *method name
The method name
grpc_sessionid t *session_id
The session 1D
grpc session attr t np *session attr
The attributes of the session
Other arguments

Arguments to be passed to the function called by RPC

DESCRIPTION

The grpc_invoke_async_with_attr np() function calls the method defined by the object handle.
The grpc_invoke_async_with_attr np() function does not wait for the called method to complete execution.

This function is MT -safe.

RETURN VALUE

If successful, GRPC NO ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC_NOT_INITIALIZED

GRPC client is not initialized yet.
GRPC SERVER NOT FOUND

GRPC client cannot find the specified server.
GRPC FUNCTION NOT FOUND

GRPC client cannot find the function on the specified server.
GRPC_INVALID FUNCTION HANDLE

Function handle specified by handle is invalid.
GRPC RPC REFUSED

RPC invocation was refused by the server, possibly because of a security issue.
GRPC_COMMUNICATION FAILED

Communication with the server failed somehow.
GRPC_TIMEOUT NP

Timeout occurred in session.
GRPC OTHER ERROR CODE

Internal error detected.

last update : $Date: 2005/11/18 08:19:13 $

NAME

grpc_invoke arg stack with attr np - Executes an RPC.

SYNOPSIS

int grpc_invoke arg stack with attr np(grpc _object handle t np *handle, char *method name,
grpc_session_attr t np *session_attr, grpc _arg stack t *stack)

ARGUMENTS

grpc object handle t np *handle
The object handle
char *method name
The method name
grpc_session attr t np *session attr
The attributes of the session
grpc arg stack t *xstack

The stack for storing arguments to be passed to the function called in the RPC

DESCRIPTION

The grpc_invoke_arg_stack_with_attr np() function calls the method defined by the object handle.
The grpc_invoke_arg_stack with_attr np() function is blocked until the execution of the called method is
completed.

This function is MT -safe.

RETURN VALUE

If successful, 0 is returned. In the case of an error, -1 is returned.

ERRORS

GRPC_NOT_INITIALIZED
The grpc_initialize() function has not been executed.
GRPC OTHER ERROR CODE
Internal error detected.

last update : $Date: 2005/07/11 07:11:24 $

NAME

grpc_invoke arg stack async with attr np - Executes an RPC.

SYNOPSIS

int grpc_invoke arg stack async with attr np(grpc_object handle t np *handle, char *method name,
grpc_session_attr t np *session_attr, grpc _arg stack t *stack)

ARGUMENTS

grpc object handle t np *handle
The object handle
char *method name
The method name
grpc_session attr t np *session attr
The attributes of the session
grpc arg stack t *xstack

The stack for storing arguments to be passed to the function called in the RPC

DESCRIPTION

The grpc_invoke_arg_stack_async_with_attr_np() function calls the method defined by the object handle.
The grpc_invoke_arg_stack async_with_attr np() function does not wait for the called method to complete
execution.

This function is MT -safe.

RETURN VALUE

If successful, the session ID is returned. In the event of an error, -1 is returned.

ERRORS

GRPC_NOT_INITIALIZED
The grpc_initialize() function has not been executed.
GRPC OTHER ERROR CODE
Internal error detected.

last update : $Date: 2005/07/11 07:11:24 $

NAME

grpc_session attr initialize np - Initializes session attributes with function handle.

SYNOPSIS

grpc_error_t grpc_session_attr _initialize np(grpc_function handle t xhandle, grpc _session attr_t np *attr)

ARGUMENTS

grpc_function handle t *handle
The function handle

grpc_session attr t np xattr
The session attributes to be initialized

DESCRIPTION

The grpc_session_attr_initialize_np() function initializes session attributes.

This function is MT -safe.

RETURN VALUE

If successful, GRPC NO _ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC NOT INITIALIZED

GRPC client is not initialized yet.
GRPC INVALID FUNCTION HANDLE

Function handle specified by handle is invalid.
GRPC OTHER ERROR CODE

Internal error detected.

last update : $Date: 2005/07/11 07:11:24 §

NAME

grpc_session attr_initialize with object handle np - Initializes session attributes with object handle.

SYNOPSIS

grpc_error_t grpc_session attr_initialize with object handle np(grpc_object handle t np *handle,
grpc_session attr t np *attr)

ARGUMENTS

grpc object handle t np *handle
The function handle

grpc_session attr t np *attr
The session attributes to be initialized

DESCRIPTION

The grpc_session_attr initialize_with_object_handle_np() function initializes session attributes.

This function is MT -safe.

RETURN VALUE

If successful, GRPC NO_ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC NOT INITIALIZED
GRPC client is not initialized yet.
GRPC INVALID OBJECT HANDLE NP
Object handle specified by handle is invalid.
GRPC OTHER ERROR CODE
Internal error detected.

last update : $Date: 2005/07/11 07:11:24 $

NAME

grpc_session attr_destruct np - Destructs session attributes.

SYNOPSIS

grpc_error t grpc session attr destruct np(grpc session attr t np *attr)

ARGUMENTS

grpc_session attr t np *attr
The session attributes to be destructed

DESCRIPTION

The grpc_session_attr destruct_np() function destructs session attributes.

This function is MT -safe.

RETURN VALUE

If successful, GRPC NO_ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC NOT INITIALIZED

GRPC client is not initialized yet.
GRPC OTHER ERROR CODE

Internal error detected.

last update : $Date: 2005/07/11 07:11:24 $

NAME

grpc_session attr_get np - Gets handle attributes.

SYNOPSIS

grpc_error_t grpc_session attr _get np(grpc_session attr t np %attr, grpc_session attr _name t np name, void
*xvalue)

ARGUMENTS

grpc session attr t np *attr

The session attributes
grpc_session _attr name t np name

The names of the attributes to be get
void *value

The values to be get

DESCRIPTION

The grpc_session_attr_get_np() function returns the values of session attributes.
See the manual of grpc_session_attr_set_np() for details of grpc_session_attr_name_t_np.

Memory area allocated for the attribute value should be released by calling grpc_session_attr_release_np()
after the value was referred.

This function is MT -safe.

RETURN VALUE

If successful, GRPC NO_ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC NOT INITIALIZED

GRPC client is not initialized yet.
GRPC OTHER ERROR CODE

Internal error detected.

last update : $Date: 2005/08/04 02:32:49 $

NAME

grpc_session attr_set _np - Sets session attributes.

SYNOPSIS

grpc_error_t grpc_session attr _set np(grpc_session attr t np %attr, grpc_session attr _name t np name, void
*value)

ARGUMENTS

grpc session attr t np *attr

The session attributes
grpc_session _attr name t np name

The names of the attributes to be set
void *value

The values to be set

typedef enum grpc session attr name e np {
GRPC_SESSION ATTR WAIT ARG TRANSFER, /% grpc _argument transfer t np */
GRPC_SESSION ATTR SESSION TIMEOUT, /% int %/

} grpc_session_attr _name t np;

® GRPC SESSION ATTR WAIT ARG TRANSFER
This flag specifies whether or not to wait for the transfer of arguments in an asynchronous RPC.
The default is to wait for the transfer.
The value set up with this attribute is shown below.
O GRPC_ARGUMENT TRANSFER WAIT
It waits for the end of transfer argument.
O GRPC_ARGUMENT TRANSFER NOWAIT
It does not wait for the end of transfer argument.
O GRPC_ARGUMENT_TRANSFER_COPY
The copy of an argument is made.
® GRPC SESSION ATTR SESSION TIMEOUT
This specifies the RPC execution timeout time. The unit is in second.

The details of this attribute is described in section 4.3.7, The client configuration file
FUNCTION_INFO section.

DESCRIPTION

The grpc_session_attr_set_np() function sets the values of session attributes.

This function is MT -safe.

RETURN VALUE

If successful, GRPC NO ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC_NOT_INITIALIZED
GRPC client is not initialized yet.
GRPC_OTHER ERROR CODE
Internal error detected.

last update : $Date: 2005/07/11 08:13:35 $

NAME

grpc_session attr_release np - frees memory for the session attribute value.

SYNOPSIS

grpc_error_t grpc_session_attr _release np(void *value)

ARGUMENTS

void *value
Pointer to the value obtained by grpc_session_attr_get_np()

DESCRIPTION

The grpc_session_attr release_np() frees memory for the value obtained by grpc_session_attr_get_np().

This function is MT -safe.

RETURN VALUE

If successful, GRPC NO_ERROR is returned. In the case of an error, an error code is returned.

ERRORS

GRPC NOT INITIALIZED
GRPC client is not initialized yet.
GRPC_OTHER ERROR_CODE
Internal error detected.

last update : $Date: 2005/08/04 02:32:49 $

NAME

grpc_arg_stack new - Prepares a stack for the arguments.

SYNOPSIS

grpc_arg _stack t xgrpc_arg stack new(int args)

ARGUMENTS

int args
Number of arguments

DESCRIPTION

The grpc_arg_stack_new() function prepares a stack for passing to grpc_call_arg_stack() and
grpc_call_arg_stack_async().

This function is MT -safe.

RETURN VALUE

If successful, the stack pointer is returned. If failed, NULL is returned.

ERRORS

GRPC_NOT INITIALIZED

The grpc_initialize() function has not been executed.
GRPC_OTHER_ERROR_CODE

Internal error detected.

last update : $Date: 2005/07/11 07:11:24 $

NAME

grpc_arg stack destruct - Destructs a stack

SYNOPSIS

int grpc_arg stack destruct(grpc_arg stack t *stack)

ARGUMENTS

grpc_arg stack xstack

The stack

DESCRIPTION

The grpc_arg_stack_destruct() function destructs a stack.

This function is MT -safe.

RETURN VALUE

Returns 0 if successful. Returns -1 in the event of an error.

ERRORS

GRPC_NOT_INITIALIZED
The grpc_initialize() function has not been executed.
GRPC OTHER ERROR CODE
Internal error detected.

last update : $Date: 2005/07/11 07:11:24 $

NAME

grpc_arg_stack push_arg - Pushes an argument onto the stack.

SYNOPSIS

int grpc_arg stack push arg(grpc_arg stack t *stack, void *arg)

ARGUMENTS

grpc_arg stack t *stack
The stack

void *arg
Argument pointer

DESCRIPTION

The grpc_arg_stack_push_arg() function pushes the specified argument onto the stack.
This function is MT -safe.

RETURN VALUE

If successful, 0 is returned. In the case of an error, -1 is returned.

ERRORS

GRPC NOT INITIALIZED

The grpc_initialize() function has not been executed.
GRPC OTHER ERROR CODE

Internal error detected.

last update : $Date: 2005/07/11 07:11:24 $

NAME

grpc_arg stack pop arg - Gets an argument from the stack.

SYNOPSIS

void *grpc_arg stack pop_arg(grpc_arg stack t *stack)

ARGUMENTS

grpc_arg stack t *stack

The stack

DESCRIPTION

The grpc_arg_stack_pop_arg() function gets one argument pointer stored in the stack and returns it.

This function is MT -safe.

RETURN VALUE

If successful, a pointer to an argument is returned. If failed, NULL is returned.

ERRORS

GRPC_NOT_INITIALIZED
The grpc_initialize() function has not been executed.
GRPC OTHER ERROR CODE
Internal error detected.

last update : $Date: 2005/07/11 07:11:24 $

NAME

grpc_wait - Waits for a session to end.

SYNOPSIS

grpc_error_t grpc_wait(grpc_sessionid t session_id)

ARGUMENTS

grpc_sessionid t session id
The session ID

DESCRIPTION

The grpc_wait() function waits for the specified session to end.

This function is MT -safe unless multiple wait functions wait the same sessions simultaneously.

RETURN VALUE

If successful, GRPC NO_ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC NOT INITIALIZED
GRPC client is not initialized yet.
GRPC INVALID SESSION 1D
Session ID is not valid.
GRPC COMMUNICATION FAILED
Communication with the server failed somehow.
GRPC SESSION FAILED
The specified session failed.
GRPC TIMEOUT NP
Timeout occurred in session.
GRPC OTHER ERROR CODE
Internal error detected.

last update : $Date: 2007/07/27 02:43:36 $

NAME

grpc_wait_all - Waits until all sessions have ended.

SYNOPSIS

grpc_error_t grpc wait all()

ARGUMENTS

None

DESCRIPTION

The grpc_wait_all() function waits for all of the executing sessions to end. When no executing sessions exist,
the grpc_wait_all() returns GRPC_NOERROR.

This function is MT -unsafe.

RETURN VALUE

If successful, GRPC NO_ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC NOT INITIALIZED

GRPC client is not initialized yet.
GRPC SESSION FAILED

The specified session failed.
GRPC TIMEOUT NP

Timeout occurred in session.
GRPC OTHER ERROR CODE

Internal error detected.

last update : $Date: 2007/07/27 02:43:36 $

NAME

grpc_wait_any - Waits for any session to end.

SYNOPSIS

grpc_error_t grpc_wait _any(grpc_sessionid t *idPtr)

ARGUMENTS

grpc_sessionid t xidPtr
Pointer to an area for returning the session ID of the session that has completed execution

DESCRIPTION

The grpc_wait_any() function waits for any one of the currently executing sessions to end. When no
executing sessions exist, the grpc_wait_any() function returns GRPC_NOERROR and sets
GRPC_SESSIONID VOID to the area pointed by idPtr.

This function is MT -unsafe.

RETURN VALUE

If successful, GRPC NO ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC NOT INITIALIZED
GRPC client is not initialized yet.
GRPC SESSION FAILED
The specified session failed.
GRPC TIMEOUT NP
Timeout occurred in session.
GRPC OTHER ERROR CODE
Internal error detected.

last update : $Date: 2007/07/27 02:43:36 $

NAME

grpc_wait_and - Waits for multiple sessions to end.

SYNOPSIS

grpc_error_t grpc _wait _and(grpc_sessionid t *idArray, size t length)

ARGUMENTS

grpc_sessionid t *idArray
Pointer to the session IDs
size t length
The number of session IDs stored in sessions

DESCRIPTION

The grpc_wait_and() function waits for all of the sessions specified by sessions to end.

This function is MT -safe unless multiple wait functions wait the same sessions simultaneously.

RETURN VALUE

If successful, GRPC NO _ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC NOT INITIALIZED
GRPC client is not initialized yet.
GRPC INVALID SESSION ID
Session ID is not valid.
GRPC SESSION FAILED
The specified session failed.
GRPC TIMEOUT NP
Timeout occurred in session.
GRPC OTHER ERROR CODE
Internal error detected.

last update : $Date: 2007/07/27 02:43:36 $

NAME

grpc_wait_or - Waits for any session to end.

SYNOPSIS

grpc_error_t grpc_wait or(grpc_sessionid t *idArray, size t length, grpc _sessionid t *idPtr)

ARGUMENTS

grpc_sessionid t *idArray
A pointer to the session IDs
size t length
The number of session IDs stored in sessions
grpc sessionid t xidPtr
Pointer to an area for returning the session ID of the session that has completed execution

DESCRIPTION

The grpc_wait_or() function sessions waits for any one of the specified sessions to end.

This function is MT -safe unless multiple wait functions wait the same sessions simultaneously.

RETURN VALUE

If successful, GRPC NO_ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC NOT INITIALIZED
GRPC client is not initialized yet.
GRPC INVALID SESSION 1D
Session ID is not valid.
GRPC SESSION FAILED
The specified session failed.
GRPC TIMEOUT NP
Timeout occurred in session.
GRPC OTHER ERROR CODE
Internal error detected.

last update : $Date: 2007/07/27 02:43:36 $

NAME

grpc_cancel - Cancels a session.

SYNOPSIS

grpc_error_t grpc_cancel(grpc_sessionid t session_id)

ARGUMENTS

grpc_sessionid t session id
The session ID

DESCRIPTION

The grpc_cancel() function cancels the current session.
grpc_cancel() is a non-blocking function. It does not wait for the completion of the cancellation.

A cancelled session should be taken care by a wait function such as grpc_wait() so that the allocated
resources for the session can be released.

Wait functions such as grpc_wait() return GRPC_SESSION_FAILED if those functions detect the cancelled
session. grpc_get_error(sessionID) returns GRPC_CANCELED_NP if the cancel was successfully completed.
Otherwise, it returns an error.

This function is MT -safe.

RETURN VALUE

If successful, GRPC NO_ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC NOT INITIALIZED
GRPC client is not initialized yet.
GRPC INVALID SESSION ID
Session ID is not valid.
GRPC OTHER ERROR CODE
Internal error detected.

last update : $Date: 2005/07/11 07:11:24 $

NAME

grpc_cancel _all - Cancels all sessions.

SYNOPSIS

grpc_error_t grpc_cancel _all()

ARGUMENTS

None

DESCRIPTION

The grpc_cancel_all() function cancels all of the executing sessions.
grpc_cancel_all() is a non-blocking function. It does not wait for the completion of the cancellation.

A cancelled session should be taken care by a wait function such as grpc_wait() so that the allocated
resources for the session can be released.

Wait functions such as grpc_wait() return GRPC_SESSION_FAILED if those functions detect the cancelled
session. grpc_get_error(sessionID) returns GRPC_CANCELED_NP if the cancel was successfully completed.
Otherwise, it returns an error.

This function is M T -safe.

RETURN VALUE

If successful, GRPC NO_ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC NOT INITIALIZED
GRPC client is not initialized yet.
GRPC_OTHER ERROR_CODE
Internal error detected.

last update : $Date: 2005/07/11 07:11:24 §

NAME

grpc_probe - Checks the session execution status.

SYNOPSIS

grpc_error_t grpc_probe(grpc_sessionid t session_id)

ARGUMENTS

grpc_sessionid t session id
The session ID

DESCRIPTION

The grpc_probe() function returns the execution status of the session specified by the session ID.

This function is MT -safe.

RETURN VALUE

If the session is completed, GRPC NO_ERROR is returned. Otherwise, GRPC NOT_COMPLETED is
returned. If
the grpc_probe itself failed, Error code is returned.

ERRORS

GRPC NOT INITIALIZED
GRPC client is not initialized yet.
GRPC INVALID SESSION ID
Session ID is not valid.
GRPC NOT COMPLETED
Call has not completed.
GRPC OTHER ERROR CODE
Internal error detected.

last update : $Date: 2005/07/11 07:11:24 $

NAME

grpc_probe_or - Checks the session execution status.

SYNOPSIS

grpc_error_t grpc_probe or(grpc_sessionid t xsessions, size t length, grpc_sessionid t *id)

ARGUMENTS

grpc_sessionid t *sessions
A pointer to the session IDs
size t length
The number of session IDs stored in sessions
grpc sessionid t *xid
Pointer to an area for returning the session ID of the session that has completed execution

DESCRIPTION

The grpc_probe_or() function returns the execution status of the sessions specified by session IDs.
If no sessions have been completed, the function returns an error.

This function is M T -safe.

RETURN VALUE

If successful, GRPC NO_ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC NOT INITIALIZED
GRPC client is not initialized yet.
GRPC_INVALID SESSION ID
Session ID is not valid.
GRPC OTHER ERROR CODE
Internal error is detected.
GRPC NONE COMPLETED
No sessions have been completed.

last update : $Date: 2005/08/03 09:23:42 $

NAME

grpc_session_info_get np - Get session information.

SYNOPSIS

grpc_error_t grpc_session_info get np(grpc_sessionid t session_id, grpc_session_info t np *xinfo, int
*status)

ARGUMENTS

grpc sessionid t session id
The session ID
grpc_session _info t np *xinfo
The session information
int *status
The session status

DESCRIPTION

The grpc_session_info_get_np() function returns information on the specified session.

If NULL is specified in info, only the session status is returned as the return value.

The storage of session information was allocated in this function. Release the session information by
grpc_session_info_release_np() when it becomes unnecessary.

grpc_session_info t np is defined in $NG_DIR/include/grpc.h.

The time of compression is included in members of grpc_session info t np listed following.

/%%

* Session Infomation

*/

/% Measured by the remote method %/

typedef struct grpc_exec_info_executable s np {
int callbackNtimesCalled;

/% The time concerning argument transmission %/
struct timeval transferArgumentToRemoteRealTime;
struct timeval transferArgumentToRemoteCpuTime;

/% The time concerning transfer file from client to remote */
struct timeval transferFileToRemoteRealTime;
struct timeval transferFileToRemoteCpuTime;

/% The time of Calculation time of executable %/
struct timeval calculationRealTime;
struct timeval calculationCpuTime;

/% The time concerning transmitting a result %/
struct timeval transferResultToClientRealTime;
struct timeval transferResultToClientCpuTime;

/% The time concerning transfer file from client to remote */
struct timeval transferFileToClientRealTime;
struct timeval transferFileToClientCpuTime;

/% The time concerning argument transmission of callback %/
struct timeval callbackTransferArgumentToClientRealTime;
struct timeval callbackTransferArgumentToClientCpuTime;

/% The time concerning callback %/
struct timeval callbackCalculationRealTime;
struct timeval callbackCalculationCpuTime;

/% The time concerning transmitting a result of callback %/
struct timeval callbackTransferResultToRemoteRealTime;
struct timeval callbackTransferResultToRemoteCpuTime;

} grpc exec info executable t np;

/* Measured by the client %/
typedef struct grpc_exec_info client s np {
int callbackNtimesCalled;

/% The time concerning request remote machine information %/
struct timeval remoteMachinelnfoRequestRealTime;
struct timeval remoteMachinelnfoRequestCpuTime;

/% The time concerning request remote class information %/
struct timeval remoteClassInfoRequestRealTime;
struct timeval remoteClassInfoRequestCpuTime;

/% The time concerning invoke GRAM x/
struct timeval gramlnvokeRealTime;
struct timeval gramlnvokeCpuTime;

/% The time concerning argument transmission %/
struct timeval transferArgumentToRemoteRealTime;
struct timeval transferArgumentToRemoteCpuTime;

/% The Calculation time of client %/
struct timeval calculationRealTime;
struct timeval calculationCpuTime;

/% The time concerning transmitting a result %/
struct timeval transferResultToClientRealTime;
struct timeval transferResultToClientCpuTime;

/% The time concerning argument transmission of callback %/
struct timeval callbackTransferArgumentToClientRealTime;
struct timeval callbackTransferArgumentToClientCpuTime;

/% The time concerning calculation of callback %/
struct timeval callbackCalculationRealTime;
struct timeval callbackCalculationCpuTime;

/% The time concerning transmitting a result of callback %/
struct timeval callbackTransferResultToRemoteRealTime;
struct timeval callbackTransferResultToRemoteCpuTime;

} grpc_exec_info client t np;

/% Compression Information %/
typedef struct grpc_compression_info s np {
int valid; /% data below valid? O:invalid, 1:valid

/% Number of bytes of data before compression %/
size t originalNbytes;

/% Number of bytes of data after compression %/
size t compressionNbytes;

/% Lapsed time at the time of compression %/
struct timeval compressionRealTime;
struct timeval compressionCpuTime;

/% Lapsed time at the time of decompression %/
struct timeval decompressionRealTime;
struct timeval decompressionCpuTime;

} grpc_compression info t np;

/* Session Information *x/

typedef struct grpc_session_info_ s np {
grpc_exec_info _executable t np gei measureExecutable;
grpc_exec_info client t np gei _measureClient;

struct {
/% Number of elements as toRemote and toClient */
int nElements;
grpc_compression_info t np *toRemote;
grpc_compression_info t np *toClient;
} gei _compressioninformation;
} grpc_session_info t np;

Refer to the following for return status.

*/

GRPC SESSION ARG IS NOT TRANSMITTED
Transmission of the arguments to the stub has not been completed.

GRPC_SESSION_EXECUTING
The session is in progress.

GRPC _SESSION DOWN
The session is not being executed.

GRPC_SESSION DONE
The session has ended.

GRPC SESSION UNKNOWN STATUS
API was failed.

This function is MT -safe.

RETURN VALUE

If successful, GRPC NO_ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC_NOT_INITIALIZED
GRPC client is not initialized yet.
GRPC INVALID SESSION ID
Session ID is not valid.
GRPC OTHER ERROR CODE
Internal error detected.

last update : $Date: 2005/07/11 08:13:35 $

NAME

grpc_session_info_release np - Release session information.

SYNOPSIS

grpc_error_t grpc_session_info release np(grpc_session_info t np xinfo)

ARGUMENTS

grpc_session _info t np *info
The session information

DESCRIPTION
The grpc_session_info_release_np() function release the session information that allocated by

grpc_session_info_get_np().
Returned immediately if NULL is specified in info.

This function is MT -safe.

RETURN VALUE

If successful, GRPC NO _ERROR is returned. In the case of an error, Error code is returned.

last update : $Date: 2005/07/11 08:13:35 §

NAME
grpc_session info threshold np - Sets the number of session information units to be saved.

SYNOPSIS

grpc_error_t grpc_session_info _threshold np(int threshold)

ARGUMENTS

int threshold
The number of session information units to be saved

DESCRIPTION

The grpc_session_info_threshold_np() function sets the number of session information units to be
saved. If a negative value is specified in threshold, discarding is not done automatically.

This function is MT -safe.

RETURN VALUE

If successful, GRPC NO ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC_NOT_INITIALIZED
GRPC client is not initialized yet.
GRPC OTHER ERROR CODE
Internal error detected.

last update : $Date: 2005/07/11 07:11:24 $

NAME

grpc_session_info remove np - grpc_session info remove np - Discards session information.

SYNOPSIS

grpc_error_t grpc_session_info _remove np(grpc_sessionid t session_id)

ARGUMENTS

grpc_sessionid t session id
The session ID

DESCRIPTION

The grpc_session_info_remove_np() function discards the information on the specified session. If the
value specified in session_ id is -1, all of the session information is discarded.

This function is MT -safe.

RETURN VALUE

If successful, GRPC NO ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC_NOT_INITIALIZED
GRPC client is not initialized yet.
GRPC INVALID SESSION 1D
Session ID is not valid.
GRPC OTHER ERROR CODE
Internal error detected.

last update : $Date: 2005/07/11 07:11:24 §

NAME

grpc_get_error - Returns the error code generated by the session.

SYNOPSIS

grpc_error_t grpc_get error(grpc_sessionid t session_id)

ARGUMENTS

grpc_sessionid t session id
The session ID

DESCRIPTION

The grpc_get_error() function returns the error code that was generated in the session specified by
session ID.

This function is MT -safe.

RETURN VALUE

If successful, the error code is returned.

ERRORS

GRPC_NOT_INITIALIZED
GRPC client is not initialized yet.
GRPC INVALID SESSION ID
Session ID is not valid.

last update : $Date: 2005/07/11 07:11:24 $

NAME

grpc_error_string - Returns the error message for the error code.

SYNOPSIS

char %grpc_error_string(grpc_error_t error_code)

ARGUMENTS

grpc_error_t error_code
The error code

DESCRIPTION

The grpc_error_string() function returns the error message that corresponds to the error code.

This function is MT -safe.

RETURN VALUE

The error message that corresponds to the specified error code is returned.
If a nonexistent error code is specified, "GRPC UNKNOWN ERROR CODE" is returned.

ERRORS

None

last update : $Date: 2005/07/11 07:11:24 §

NAME

grpc_perror_np - Displays the last error that occurred.

SYNOPSIS

grpc_error_t grpc_perror_np(char xstr)

ARGUMENTS

char *str

The character string to be displayed

DESCRIPTION

The grpc_perror_np() function displays the last error that occurred in the standard error output.

This function is MT -safe.

RETURN VALUE

GRPC_NO _ERROR is returned.

ERRORS

None

last update : $Date: 2005/07/11 07:11:24 $

NAME

grpc_get _failed sessionid - Get session ID that failed for calls.

SYNOPSIS

grpc_error_t grpc_get failed sessionid(grpc_sessionid t *idPtr)

ARGUMENTS

grpc_sessionid t xidPtr
The session ID

DESCRIPTION

The grpc_get_failed_sessionid() function returns the session ID associated with the most recent
GRPC_SESSION_FAILED error. This provides additional error information on a specific session ID that failed
for calls that deal with sets of session IDs, either implicitly, such as grpc_wait_all(), or explicitly, such as
grpc_wait_and().

When there are more than two failed sessions, this function will return the session ID one by one. To make
sure that all the failed sessions are handled, users have to call this function repeatedly until it returns
GRPC SESSIONID VOID.

This function is MT -safe.

RETURN VALUE

If successful, GRPC NO_ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC NOT INITIALIZED

GRPC client is not initialized yet.
GRPC OTHER ERROR CODE

Internal error detected.

last update : $Date: 2005/08/04 02:40:32 §

NAME

grpc_last error get np - Returns the error code of the last error to occur.

SYNOPSIS

grpc_error_t grpc_last error_get np()

ARGUMENTS

None

DESCRIPTION

The grpc_last_error_get_np() function returns the error code of the last error to occur.

This function is M T -safe.

RETURN VALUE

The error code of the last error to occur

ERRORS

None

last update : $Date: 2005/07/11 07:11:24 $

NAME

grpc_signal_handler_set np - Set the signal handler

SYNOPSIS

grpc_error_t grpc_signal handler _set np(int sig num, void (*sig handler)(int))

ARGUMENTS

int sig num

The signal whose handler is modified.
void (xsig handler)(int))

The address of a signal handler.

DESCRIPTION

The grpc_signal_handler_set_np() function modifies signal dispositions for Ninf-G Client.
Procedures for signal handling differs according to environments and a signal to be processed.
e pthread flavors of GT 4.0.0 or later
Ninf-G uses signal handling API provided by GT4, but the API does not support SIGKILL, SIGSEGV,
SIGABRT, SIGBUS, SIGFPE, SIGILL, SIGIOT, SIGPIPE, SIGEMT, SIGSYS, SIGTRAP, SIGSTOP,
SIGCONT and SIGWAITING.
If sig_num is supported by GT's signal handling API, sig handler is called by a signal handling thread.

if sig_num is not supported by GT's signal handling API, sig handler is called as a signal handler
registered by sigaction().

e pthread flavors of earlier than GT 4.0.0
Ninf-G has signal handling thread which supports the same signals as GT4 signal handling APL

If sig num is supported by a Ninf-G signal handling thread, sig handler is called by the signal handling
thread. Otherwise, sig_handler is called as a signal handler registered by sigaction().

Note: For pthread flavor on MacOS X, Ninf-G Client processes SIGSTP as well.
e nonthread flavors for all versions of GT.
sig_handler is called as a signal handler registered by sigaction().

It is unsafe to call some system calls from the signal handler registered by sigaction(). A list of safe system
calls is available on the following web page and IEEE Std 1003.1(POSIX).

http: //www.opengroup.org/onlinepubs/007908799 /xsh/sigaction.html

This function is a new function in Ninf-G version 4.0.0.

This function is MT -safe.

RETURN VALUE

If successful, GRPC NO _ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC_NOT_INITIALIZED
GRPC client is not initialized yet.
GRPC_OTHER ERROR CODE
Internal error detected.

last update : $Date: 2006/09/29 07:31:53 $

NAME

grpc_is canceled np - Checks whether the Ninf-G Client has requested cancellation.

SYNOPSIS

#include <grpc_executable.h)

int grpc_is _canceled np()

ARGUMENTS

grpc error t kerror
If successful, GRPC NO ERROR is returned to *error. In the case of an error, Error code is returned
to *error.

DESCRIPTION

The grpc_is_canceled_np() function checks whether the Ninf-G Client has requested cancellation or not.

Note: grpc_is_canceled np() is defined as Ninf-G Executable API, which is only used by the server side
program.

RETURN VALUE

If the Ninf-G Client requested the session cancel by grpc_cancel(), this function returns 1. Otherwise, this
function returns 0.

ERRORS

None

last update : $Date: 2007/07/10 05:19:42 $

NAME

grpc_get info np - Returns session information.

SYNOPSIS

grpc_error_t grpc_get _info np(grpc_sessionid t session_id, grpc_exec_info t np xinfo,

ARGUMENTS

grpc_sessionid t session id

The session ID

grpc_exec_info t np *info

The session information

int *status

The session status

DESCRIPTION

Not recommend. Use grpc_session_info_get_np() instead.

The grpc_get_info_np() function returns information on the specified session.

If NULL is specified in info, only the session status is returned as the return value.
grpc_exec_info_t_np is defined in $NG_DIR/include/grpc.h.

The time of compression is included in members of grpc_exec_info_t_np listed following.

transferArgumentReal Time
transferArgumentCPUTime
transferResultRealTime
transferResultCPUTime
callbackTransferArgumentRealTime
callbackTransferArgumentCPUTime
callbackTransferResultRealTime
callbackTransferResultCPUTime

typedef struct grpc_exec_info s np {

struct {

/% Measured by the remote method %/

/* Real time of the time concerning argument transmission %/
struct timeval transferArgumentRealTime;

/% CPU time of the time concerning argument transmission %/
struct timeval transferArgumentCpuTime;

/* Real time of Calculation time of executable */

struct timeval calculationRealTime;

/% CPU time of Calculation time of executable %/

struct timeval calculationCpuTime;

/% Real time of the time concerning transmitting a result %/
struct timeval transferResultRealTime;

/% CPU time of the time concerning transmitting a result %/
struct timeval transferResultCpuTime;

/% Real time of the time concerning argument transmission of callback %/
struct timeval callbackTransferArgumentRealTime;

/* CPU time of the time concerning argument transmission of callback %/
struct timeval callbackTransferArgumentCpuTime;

/% Real time of time concerning callback %/

struct timeval callbackCalculationRealTime;

/% CPU time of time concerning callback %/

struct timeval callbackCalculationCpuTime;

/* Real time of the time concerning transmitting a result of callback %/
struct timeval callbackTransferResultRealTime;

/% CPU time of the time concerning transmitting a result of callback %/
struct timeval callbackTransferResultCpuTime;

} gei _measureExecutable;
struct {

/* Measured by the client %/

int *status)

/% Real time of the time concerning request remote machine information %/
struct timeval remoteMachinelnfoRequestRealTime;

/* CPU time of the time concerning request remote machine information %/
struct timeval remoteMachinelnfoRequestCpuTime;

/* Real time of the time concerning request remote class information %/
struct timeval remoteClassInfoRequestRealTime;

/% CPU time of the time concerning request remote class information %/
struct timeval remoteClassInfoRequestCpuTime;

/* Real time of the time concerning invoke GRAM %/

struct timeval gramlnvokeRealTime;

/* CPU time of the time concerning invoke GRAM %/

struct timeval gramlnvokeCpuTime;

/* Real time of the time concerning argument transmission %/
struct timeval transferArgumentRealTime;

/* CPU time of the time concerning argument transmission %/
struct timeval transferArgumentCpuTime;

/* Real time of Calculation time of client %/

struct timeval calculationRealTime;

/% CPU time of Calculation time of client %/

struct timeval calculationCpuTime;

/% Real time of the time concerning transmitting a result %/
struct timeval transferResultRealTime;

/* CPU time of the time concerning transmitting a result %/
struct timeval transferResultCpuTime;

/* Real time of the time concerning argument transmission of callback */
struct timeval callbackTransferArgumentRealTime;
/% CPU time of the time concerning argument transmission of callback %/
struct timeval callbackTransferArgumentCpuTime;
/% Real time of time concerning calculation of callback %/
struct timeval callbackCalculationRealTime;
/% CPU time of time concerning calculation of callback %/
struct timeval callbackCalculationCpuTime;
/* Real time of the time concerning transmitting a result of callback %/
struct timeval callbackTransferResultRealTime;
/% CPU time of the time concerning transmitting a result of callback %/
struct timeval callbackTransferResultCpuTime;
} gei_measureClient;
} grpc_exec_info t np;

Refer to the following for return status.

GRPC _SESSION ARG _IS NOT TRANSMITTED
Transmission of the arguments to the stub has not been completed.

GRPC SESSION EXECUTING
The session is in progress.

GRPC_SESSION DOWN
The session is not being executed.

GRPC SESSION DONE
The session has ended.

GRPC _SESSION UNKNOWN _STATUS
API was failed.

This function is MT -safe.

RETURN VALUE

If successful, GRPC NO_ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC_NOT_INITIALIZED

GRPC client is not initialized yet.
GRPC_INVALID SESSION ID

Session ID is not valid.
GRPC_OTHER ERROR CODE

Internal error detected.

last update : $Date: 2005/07/11 07:11:24 §

NAME

grpc_get_last_info_np - Returns the information on the last session that was run.

SYNOPSIS

grpc_error_t grpc_get last _info np(grpc_exec_info t np *info, int *status)

ARGUMENTS

grpc_exec _info t np *info
The session information
int *status
The session status

DESCRIPTION

Not recommend. Use grpc_session_info_get_np() instead.

The grpc_get_last_info_np() function returns the information on the last-executed session.
If NULL is specified in info, only the status of the session is returned as the return value.
See the manual of grpc_get_info_np() for details of info.

Refer to the following for return status.

GRPC _SESSION ARG _IS NOT TRANSMITTED
Transmission of the arguments to the stub has not been completed.

GRPC SESSION EXECUTING
The session is in progress.

GRPC_SESSION DOWN
The session is not being executed.

GRPC SESSION DONE
The session has ended.

GRPC_SESSION UNKNOWN _STATUS
API was failed.

This function is MT -safe.
RETURN VALUE

If successful, GRPC NO ERROR is returned. In the case of an error, Error code is returned.

ERRORS

GRPC NOT INITIALIZED

GRPC client is not initialized yet.
GRPC OTHER ERROR CODE

Internal error detected.

last update : $Date: 2005/07/11 07:11:24 $

8. Ninf-G Utility Command Reference Manual

This is the reference manual for the utility command provided by Ninf-G. (The text is in the format of a
UNIX on-line manual.)

e Ng cC

e ng delete functions
e ng dump functions
e ng gen

e ng version

last update : $Date: 2005/11/18 08:19:14 §

NAME

ng cc - The Ninf-G Client compiler

SYNOPSIS

ng cc [compiler options]

DESCRIPTION

The ng cc is a script that wraps the compiler and linker. It generates Ninf-G Client programs by compiling
and linking application programs.

Options and arguments for the compiler and linker can be written on the ng_cc command line. Those are
passed to the compiler and linker used in ng cc .

For example, executing the following command will to generate Ninf-G Client(test_client) from the
test_client.c application program using the default (C language) compiler and linker.

% ng cc -g —o test client test client.c

The default compiler and linker used by ng cc is the C compiler and linker, cc. If the application program is
written in C and the cc compiler and linker is used, executing the ng cc command will create an Ninf-G
Client.

A compiler and linker other than cc can be used by setting the NG COMPILER and NG_LINKER

environment variables to specify the compiler and linker to be used by ng cc.

Note: Mixed utilization of off t and other file size related data types may cause mismatch of data size. By
default, ng_cc uses large file option such as _FILE_OFFSET_BITS=64 (on Linux) as its compile option. Thus,
the size of off t type compiled by ng cc may differ from the size of off t type compiled by non ng cc
command.

ERRORS

If the compiling of the application program fails, the compiler error message is output.

last update : $Date: 2008/03/12 09:07:12 $

NAME

ng delete functions - Deletes function information

SYNOPSIS

ng delete functions [-f] Module[/Entry] ...

DESCRIPTION

The ng delete_functions command deletes the specified function information from the MDS, making that
information unavailable from the MDS.

Specifying a list of "module name" or "module name/entry name" in the argument will result in the
corresponding information being deleted from the MDS.

If "module name/entry name" is specified, the corresponding information will be deleted. If "module name'
only is specified, all of the function information that pertains to that module will be deleted.

When the information is deleted, a confirmation is performed for the deletion of each entry.
If the -f option is specified, the deletion confirmations are not performed.

When the deletion operation is successful, a list of the deleted entry names is output.

OPTIONS

-f
The delete confirmation is not performed.

ERRORS

If an attempt is made to delete an entry for which there is no delete permission, a message is output to
inform of the lack of permission.

last update : $Date: 2005/07/11 07:13:44 $

NAME

ng dump functions - outputs function information

SYNOPSIS

ng dump functions [Module[/Entry] ...]

DESCRIPTION

The ng dump functions command outputs the function information provided by the MDS of the host on which
the command was executed. If a "module name" or "module name/entry name" is specified in the argument,
the corresponding function information will be output; if nothing is specified, all of the function information
provided by that host will be output.

The following information is output.
- The owner of the function

- The module name

- The entry name

last update : $Date: 2005/07/11 07:13:44 §

NAME

ng_gen - ng gen - Ninf-G stub generator

SYNOPSIS

ng_gen [-d] [-g] [-h] inputfile
DESCRIPTION

The ng gen command interprets the Ninf-G IDL file and generates what is needed to create an Ninf-G
Executable . The Ninf-G IDL is specified by the argument.

The ng_gen command executes cpp to process the Ninf-G IDL file.
If unsupported option strings(beginning with '-') are passed to ng_gen command, it handles them as options
to cpp.

The ng gen command generates the following items.
- Ninf-G stub
- Makefile for the Ninf-G Executable

- LDIF file
- Local LDIF file

OPTIONS

-d
Dump information about function.

-g
Produce makefile in gnu make style.

-h
Print usage.

--no-cpp
Do not use cpp.

- -with-cpp=cpp_command
Use the specified cpp instead of the default cpp.

ERRORS

If the input Ninf-G IDL is incorrect, an error message is output and the process ends abnormally.

last update : $Date: 2006/02/17 04:21:01 §

NAME

ng version - print Ninf-G version

SYNOPSIS

ng version [-v]

DESCRIPTION
The ng version prints version of Ninf-G.
OPTIONS

-V
Prints configure options performed on compiled time.

last update : $Date: 2005/07/11 07:13:44 $

Invoke Server Developer's Manual

This document describes how to develop a Ninf-G Invoke Server.

e 1. Introduction
o 1.1 Overview of a typical client application
o 1.2 Requirements for underlying middleware
o 1.3 Implementation Overview
o 1.4 Execution flow
e 2. Specifications of Invoke Server
o 2.1 Detailed overview of Invoke Server
o 2.2 Protocol between a Ninf-G Client and Invoke Server
m 2.2.1 Overview

m 2.2.2 Protocol

m 2.2.2.1 Request

m 2.2.2.2 Reply

m 2.2.2.3 Notify

m 2.2.2.4 JOB CREATE Request

e Appendix A. How to specify the Invoke Server
o A.1. How to specify Invoke Server
o A.2. How to pass information to Invoke Server
o A.3. Polling interval
o A.4. Logfile
o A.5. Maximum number of jobs per Invoke Server
o A.6. How to specify the path of the Invoke Server
e Appendix B. Miscellaneous information
o B.1. Job Timeout
o B.2. Redirect stdout/stderr is implemented using files

1. Introduction

A Ninf-G Client invokes a Ninf-G Executable on the server machine when a function requiring initialization
of function/object handles, such as grpc_function_handle_init(), is called. Ninf-G, Version 2, implements the
remote process invocation using the Globus Toolkit's Pre-WS GRAM feature. Implemented using the Globus
API, the invocation mechanism has been embedded in Ninf-G. In order to utilize other systems, such as WS
GRAM, UNICORE, or Condor for remote process invocation, Ninf-G, Version 4, implements the invocation
mechanism as a separate module called "Invoke Server." This design enables users and developers to
implement and add a new Invoke Server that can utilize any job invocation mechanism.

Ninf-G Version 4.2.0 includes the following Invoke Servers:

Invoke Server for WS GRAM, implemented in Python (GT4py)

Invoke Server for SSH, implemented in C (SSH)

Invoke Server for Condor, implemented in Java (Condor)

Invoke Server for Pre-WS GRAM, implemented in C (GT2c¢)

Invoke Server for WS GRAM, implemented in Java (GT4java)

Invoke Server for UNICORE, implemented in Java (UNICORE)

Invoke Server for NAREGI Super Scheduler, implemented in Java (NAREGISS)

1.1 Overview of a typical client application
Here is a typical flow of a Ninf-G Client application:
e (1) grpc_initialize()

Initializes data structures used by the Ninf-G Client.

e (2) grpc_function_handle_init()

Creates a function/object handle which requests remote process invocation. The request will be
processed and a Ninf-G Executable will be created on the server machine. When the Ninf-G
Executable is created, it connects to the Ninf-G Client to establish a TCP connection between the
Ninf-G Executable and the Ninf-G Client.

e (3) grpc_call() or grpc_call_async()/grpc_wait_any()

Calls the remote function, i.e. (3.1) the Ninf-G Client sends arguments to the Ninf-G Executable,
(3.2) the Ninf-G Executable performs some form of computation, and (3.3) the Ninf-G Executable
sends the results to the Ninf-G Client.

e (4) grpc_function_handle_destruct()

Requests the Ninf-G Executable to terminate its process. If an error occurs during the termination, the
Ninf-G Client requests the Invoke Server to kill the Ninf-G Executable.

e (5) grpc_finalize()
Frees the data structures used by the Ninf-G Client.

Invoke Server is required to implement initialization and finalization of the function/object handles which are
described in steps (2) and (4).

1.2 Requirements for underlying middleware

The only requirement for underlying middleware is that the middleware must be capable of remote process
invocation. Examples of such middleware include the Globus Toolkit Pre-WS GRAM, Globus Toolkit WS
GRAM, Unicore, Condor, and SSH.

1.3 Implementation overview

Invoke Server is an adapter for the underlying middleware and it handles requests from a Ninf-G Client.
Invoke Server analyzes and processes the request sent from the Ninf-G Client and replies to the Ninf-G
Client. For example, if Invoke Server receives a JoB CREATE request from the Ninf-G Client, Invoke Server
creates a Job ID, returns the Job ID to the Ninf-G Client, and invokes the job processes called for in the
request.

Invoke Server can be implemented using any language. The details of the protocol existing between the
Ninf-G Client and Invoke Server are described in Section 2.

1.4 Execution flow

This section describes a sample RPC flow to a server called serverA via the Invoke Server, IS SAMPLE.
e (Prerequisite)

e (1) A client configuration file that describes that Invoke Server Is sawPLE is used for RPC to serverA
must be prepared.

e (grpc_function_handle_init())

e (2) The Ninf-G Client requests Invoke Server 1S_SAMPLE to create a function/object handle.

e (3) The first time 1S _SAMPLE is required to create a function/object handle, the 1S SAMPLE process is
spawned by the Ninf-G Client on the same machine. ${NG DIR}/bin/ng invoke server.|S SAMPLE iS a

command for spawning an 1S _SAMPLE process.

e (4) The Ninf-G Client and IS SAMPLE communicate using three pipes (stdin, stdout, and stderr).

e (5) When grpc_function_handle_init() is called, the Ninf-G Client sends JOB_CREATE request to IS_SAMPLE,
followed by the required information (e.g., the hostname and port number of the remote server), and
JOB_CREATE_END.

e (6) When IS _SAMPLE receives JOB CREATE request, IS SAMPLE returns ”s” to the Ninf-G Client, which
indicates that the request has been received by the Invoke Server.

e (7) 1s_SAMPLE generates a new Job ID that corresponds to the Request ID that was transferred with the
JOB_CREATE request, and notifies the Job ID to the Ninf-G Client. Then, Is_SAMPLE invokes the remote
processes (Ninf-G Executable) on serverA using its underlying middleware.

e (8) The Ninf-G Client waits for the reply from IS sAMPLE, and notify of Job ID. When the Ninf-G Client
receives the reply and Job ID, it resumes the execution without waiting for actual job invocation on
serverA.

e (grpc_call())

¢ (9) When the Ninf-G Executable is invoked on serverA, it connects to the Ninf-G Client using
Globus 10. The connection is used for communication (e.g., argument transfers from the Ninf-G Client
to the Ninf-G Executable) between the Ninf-G Client and the Ninf-G Executable. 1S sAMPLE does
nothing for grpc_call(). If the underlying middleware for IS_SAMPLE returns an error on remote process
invocation, 1S SAMPLE must notify the Ninf-G Client that the job invocation has failed.

e (grpc_function_handle_destruct())

e (10) When grpc_function_handle_destruct() is called, the Ninf-G Client requests the Ninf-G Executable
to exit the process. This communication is carried out between the Ninf-G Client and the Ninf-G
Executable. The Ninf-G Client does not wait for the Ninf-G Executables to be terminated.

e (11) When the Ninf-G Executable exits the process, the job status managed by IS _SAMPLE should be
changed to DONE, and 1S SAMPLE notifies the Ninf-G Client of the change in job status to DONE.

e (12) The Ninf-G Client sends a JOB_DESTROY request to 1S_SAMPLE.

e (13) 1s sampLE returns ”S” to the Ninf-G Client when it receives the J0B DESTROY request.

e (14) 1s_sampLE returns DONE to the Ninf-G Client if the state of the corresponding job is DONE.
Otherwise, 1s_sAMPLE cancels the job and notifies the Ninf-G Client of the change in status to DONE
when the cancellation is completed and the status of the job actually becomes DONE.

e (grpc_finalize())

e (15) When grpc_finalize() is called, the Ninf-G Client sends an EXIT request to 1S SAMPLE.

e (16) 1s_sampLE returns ”S” to the Ninf-G Client when it receives the ExIT request. The pipes between
1s_sampLE and Ninf-G Client (stdin, stdout, stderr) are closed after it.

e (17) 1s_sampLE cancels all jobs and wait the termination of all jobs, and exit.

e (18) When the Ninf-G Client receives an ”s” from IS _SAMPLE, it continues its execution, and does not
wait for the termination of all jobs.

The following figure illustrates the interaction between the Ninf-G Client, Invoke Server, and the Ninf-G
Executable.

5\

/G WS GR AN = [Minf-G Executable
N J

Invoke Server | g
| %\ﬁ
i WS GR AR

NinFG - [e WS GRAM W Ninf-G Executable
Client | g "] Y,
N

| Invoke Server WS GRE AR ™ 1inf-G Executable
| (Pre's GRAR) ™ vy

| L]

9 Client Side) Prei/s GRAM — Ninf-G Executable j

Metwark Server Side ***

Figure 1: Interaction between the Ninf-G Client, Invoke Server and the Ninf-G Executable

2. Specifications of Invoke Server

This section describes a detailed overview of Invoke Server and the protocol existing between a Ninf-G
Client and Invoke Server.

2.1 Detailed overview of Invoke Server

L.

Invoke Server is invoked when a Ninf-G Client initializes a function/object handle on the remote
server which Ninf-G Client is configured to use with Invoke Server.

The maximum number of jobs per Invoke Server is limited. If the number of jobs exceeds the limit, a
new Invoke Server is invoked.

Invoke Server exits the process if it receives an EXIT request from the Ninf-G Client. This request is
sent when the Ninf-G Client calls grpc_finalize(). Invoke Server also exits the process if it is managing
the maximum number of jobs and all jobs are terminated.

The Ninf-G Client and Invoke Server communicate using three pipes, created by the Ninf-G Client
when the Invoke Server is invoked.

Ninf-G Client does not wait for the termination of Invoke Server after the Ninf-G Client sends an EXIT
request to Invoke Server.

If the Ninf-G Client exits abnormally, the pipes will be disconnected. When Invoke Server detects that
the pipes have been disconnected, Invoke Server must cancel all jobs and exit the process.

Invoke Server is implemented as a Unix executable or script file which should be located in the
${NG_DIR}/bin directory. It can be located in another directory if Invoke Server is supplied with an
absolute path to the executable file.

The file names used with Invoke Server must follow the naming convention of "ng invoke server" +
suffix, where the suffix corresponds to rules for the underlying middleware used for remote process
invocation.

Log file for Invoke Server can be specified as an optional argument of the Invoke Server command.

Example:

-1 [Log file name]

If this option is specified, Invoke Server outputs logs to the file specified by this argument. Otherwise,
logs are not recorded.

2.2 Protocol between a Ninf-G Client and Invoke Server

2.2.1 Overview

A Ninf-G Client and Invoke Server exchange three types of messages, Request, Reply, and Notify. A
Request message is sent from a Ninf-G Client to Invoke Server. Reply and Notify messages are sent from
Invoke Server to the Ninf-G Client. The Ninf-G Client assumes that a Reply message must be returned from
Invoke Server when the Ninf-G Client sends a Request message. A Notify message is used to send messages
from Invoke Server to the Ninf-G Client asynchronously. Three different pipes are used for sending these
three types of message.

| Name | fd | direction
|[Request [stdin [Ninf-G |- - - -> [[nvoke
[Reply [stdout |Client [<---- [Server

[Notify |[stderr [<----

2.2.2 Protocol

All messages are sent as plain text. The Return code (<RET>) is 0x0d0a. The Return code is a delimiter that
determines the unit of messages. A Job ID is generated by Invoke Server.

2.2.2.1 Request

Four Request messages, JOB CREATE, JOB STATUS, JOB DESTROY, and EXIT are supported.

1. JOB CREATE
o Format

JOB CREATE <Request ID>XRET)>
hostname <RET>

port <RET>

... (snip)

JOB CREATE END<RET>

o Explanation

This request is used to create and invoke a new job. Required information for job invocation is
described as a set of attributes that is transferred along with a JoB_CREATE request. The details of
these attributes are described in Section 2.2.2.4. J0oB CREATE is the only request that is described
using multiple lines. All the other requests can be described with a single line.

A Ninf-G Client transfers a Request ID to Invoke Server. Invoke Server generates a unique Job
ID and returns it to the Ninf-G Client. The Job ID is used by the Ninf-G Client to specify the
job.

When Invoke Server receives a JOB CREATE request, it must send a Reply message to the Ninf-G
Client. Then, Invoke Server generates a unique Job ID and notifies the Ninf-G Client of the Job
ID. Finally, Invoke Server requests job invocation on remote servers via the underlying
middleware used with the Invoke Server.

2. JOB STATUS
o Format

JOB_STATUS <Job ID><RET>

o Explanation

This request queries Invoke Server on the status of jobs. The current version of Ninf-G4 and
prior does not use this JOB STATUS request.

3. JOB DESTROY
o Format

JOB_DESTROY <Job ID><RET>

o Explanation
This request is used to terminate and destroy jobs. Invoke Server cancels all jobs if it receives
this request and the corresponding jobs are not completed. When Invoke Server confirms that all
jobs are cancelled, it sends DoNE to the Ninf-G Client.
4, EXIT
o Format

EXIT<RET>

o Explanation

This request is used to terminate Invoke Server. If Invoke Server receives this EXIT request, it
must cancel all outstanding jobs and wait for their termination.

2.2.2.2 Reply

Invoke Server must send a Reply message to a Ninf-G Client if Invoke Server receives a Request message
from that Ninf-G Client.

The reply to JOB CREATE, JOB DESTROY, and EXIT messages isS:

[S | F <Error String>]<RET>

where S is sent in case of Success. Otherwise, F is returned, followed by <Error String>.

The reply to a JOB_STATUS message is:

[S <Status> | F <Error String>]<RET>

Where <Status> is denoted as:

<Status> : [PENDING | ACTIVE | DONE | FAILED]

Each status indication indicates the status such that:

PENDING : the Ninf-G Executable is waiting for invocation.
ACTIVE : the Ninf-G Executable is already invoked.

DONE : the Ninf-G Executable is already done.

FAILED : the Ninf-G Executable exited abnormally.

2.2.2.3 Notify

A Notify message is used to send an asynchronous message from Invoke Server to a Ninf-G Client. Two
types of Notify message are provided.

1.

2.

CREATE NOTIFY
o Format

CREATE NOTIFY <Request ID> [S <Job ID> | F <Error String>]<RET>

o Explanation

This is used to notify the Ninf-G Client of the Job ID. A Job ID is case sensitive and cannot
include invisible characters.

STATS NOTIFY
o Format

STATUS NOTIFY <Job ID> <Status> <String><RET>

<Status> : [PENDING | ACTIVE | DONE | FAILED]

o Explanation
This message is used to send notification that the status of a job has been changed.

<String> can be any string, and the <String> is stored in an output log. It should be noted that
the status of job can be changed from PENDING to DONE.

2.2.2.4 JOB_CREATE Request

This section describes the details of a JOB_CREATE Request.

Format

JOB CREATE <Request ID>XRET>
hostname <RET>

port <RET>

... (snip)

JOB CREATE END<RET>

Attributes are placed between JOB CREATEKRET> and JOB CREATE DONE<RET>. Only one attribute can occupy
one line and one line must include one and only one attribute. Attributes can be placed in any order.
There are two types of attributes, mandatory attributes and optional attributes. Invoke Server must
return an error if mandatory attributes are not included. Any unknown optional attributes must be

ignored.
e Attributes
The following is a list of attributes supported by Ninf-G. Some of these attributes are provided for the

Globus Toolkit's Pre-WS GRAM and WS-GRAM. Any new attribute can be defined using the Client
configuration file <SERVER> section ”invoke server option” attribute.

| name Imandatory | meanings

lhostname lyes |[Host name of the server

[port lyes [Port number

liobmanager no lJob Manager

lsubject Ino [Subject of the GRAM

lclient name lyes |Host name of the Ninf-G Client
lexecutable path |yes |Path of the Ninf-G Executable

backend lyes [Backend of the remote function (e.g., MPI)
lcount lyes INumber of Ninf-G Executables

Istaging lyes |A flag indicating if staging is used or not
argument lyes |Arguments for the Ninf-G Executable
lwork directory [no [Working directory of the remote function
lgass url Ino [The URL of GASS

redirect enable [yes |A flag indicating redirection of stdout/stderr
Istdout file Ino [file name of stdout

Istderr file Ino Ifile name of stderr

lenvironment Ino |Environment variables

tmp dir Ino ftemporary files directory

Istatus polling lyes [Interval of status polling

[refresh credential [yes [Interval of credential refresh

Imax_time Ino [Maximum execution time

Imax wall time Ino [Maximum wall clock time

Imax_cpu time Ino IMaximum CPU time

laueue name Ino IName of the queue

Iproject Ino IName of the project

host count Ino INumber of executables per host

Imin_ memory no IMinimum size of requested memory

Imax memory no IMaximum size of requested memory

lrsl extensions [no IRSL extension

Detailed description
o hostname
Host name of the server machine.
o port

The server port number on which the server is listening. The default value is depend on
underlying middleware.

o jobmanager
The job manager used on the server machine.
o subject [subject]
The certificate subject of the resource manager contact.
o client_name [client name]
The host name of the client machine.
o executable_path [path to the executable]

Absolute path of the Ninf-G Executable. The path represents a remote path if staging is off.
Otherwise, the path represents a local path.

o backend [backend]
The method for launching the Ninf-G Executable is specified as backend. The value is NORMAL,
MP1, or BLACS. If MPI or BLACS is specified, the Ninf-G Executable must be invoked via the mpirun
command.

o count [N]

The number of Ninf-G Executables to be invoked. If the backend is MPI or BLACS, count means
the number of nodes.

o staging [true/false]

The value is true if staging is on and Invoke Server must transfer the Ninf-G Executable file from
the local machine to the remote machine.

o argument [argument]
An argument for the Ninf-G Executable is specified using this attribute. This attribute can
specify one argument only, and multiple arguments must be specified one by one, by using this
attribute for each one. The arguments must be passed to the Ninf-G Executable as arguments.

Example:

argument --client=...
argument —--gass server=, ..

o work_directory [directory]|
This attribute specifies the directory in which the Ninf-G Executable is invoked.
o gass_url

This directory specifies the URL of the GASS server on the Client machine. This attribute is
used for the Globus Toolkit's Pre-WS GRAM.

o redirect_enable [true/false]

This attribute is set to true if the stdout/stderr of the Ninf-G Executable has been requested to
be transferred to the Ninf-G Client.

o stdout_file [filename]

If redirect_enable is set to true, this attribute specifies the name of the output file for stdout.

Invoke Server must output the stdout to this file. The Ninf-G Client reads this file as an output
file and writes the contents of the file to the stdout of the Ninf-G Client.

stderr_file [filename]

If redirect_enable is set to true, this attribute specifies the name of the output file of the stderr.
Invoke Server must output the stderr to this file. The Ninf-G Client reads this file as an output
file and writes the contents of the file to the stderr of the Ninf-G Client.

environment [ENV=VALUE]

The environment variable for the Ninf-G Executable is passed using this attribute. The
environment variable and its value are connected by =. Only the variable is specified if it does
not take a value. Multiple environment variables must be specified one by one.

tmp_dir [directory]

The directory in which temporal files are placed.

status_polling [interval]

Invoke Server may need to check the status of jobs by polling the status of existing jobs. This
attribute specifies the interval of the polling. The value is in seconds, and if it is not specified,
the default value 0 is passed.

refresh_credential [interval]

This attribute specifies the interval for refreshing credentials. The value is in seconds, and if it
is not specified, the default value 0 is passed.

max_time [time]

This attribute specifies the maximum time of the job.
max_wall_time [time]

This attributes specifies the maximum wall clock time of the job.
max_cpu_time [time]

This attribute specifies the maximum cpu time of the job.
queue_name [queue]

This attribute specifies the name of the queue to which the Ninf-G Executable should be
submitted.

project [projectname]

This attribute specifies the name of the project.

host_count [number of nodes]

This attribute specifies the number of nodes.

min_memory [memory size (MB)]

This attribute specifies the minimum requirements for the memory size of the job.
max_memory [memory size (MB)]

This attribute specifies the maximum memory size of the job.

o rsl_extensions [RSL extension]

This attribute can be used to specify the RSL extension which is available for the Globus
Toolkit's WS GRAM.

Appendix A. How to specify the Invoke Server

Invoke Server is specified by the Ninf-G Client using a Client configuration file.
A.1. How to specify Invoke Server

Invoke Server is specified by using the invoke _server attribute in the <SERVER> section.

invoke server [type]

Type specifies the type of the Invoke Server, such as GT4py or UNICORE.
A.2. How to pass information to Invoke Server

Invoke Server may require options for its execution. Such options can be specified by an option attribute in
the <INVOKE_SERVER> section or by an invoke server option attribute in the <SERVER> section.

option [String]
invoke server option [String]

Multiple attributes can be specified in the <SERVER> or <INVOKE SERVER> sections.
A.3. Polling interval

Invoke Server must check the status of jobs, and this may be implemented using polling. The polling interval
can be specified by the status_polling attribute in the <INVOKE_SERVER> section.

status polling [interval (seconds)]

A.4. Logfile

The filename of the Invoke Server's execution log can be specified by the invoke server log attribute in the
<CLIENT> section.

invoke server log [filename]

If this attribute is specified, Invoke Server outputs logs to a file with the specified filename and file type of
that Invoke Server.

The log_filePath attribute in the <INVOKE _SERVER> section can be used to specify a log file for a specific
Invoke Server.

log filePath [Log file name]

A.5. Maximum number of jobs per Invoke Server

The maximum number of jobs per Invoke Server can be limited by the max jobs attribute in the

<INVOKE SERVER> section. If the number of requested jobs exceeds this value, the Ninf-G Client invokes
a new Invoke Server and requests that Invoke Server to manage the new jobs.

max_jobs [maximum number of jobs]

A.6. How to specify the path of the Invoke Server

If Invoke Server is not located in a pre-defined directory, the path attribute in <INVOKE SERVER> can be
used to specify the path of the Invoke Server.

path [path of the Invoke Server]

Appendix B. Miscellaneous Information
B.1. Job Timeout

The Job Timeout function is managed by the Ninf-G Client. Invoke Server is not responsible for the
timeout.

B.2. Redirect stdout/stderr is implemented using files

Redirect stdout/stderr is implemented using files.

e The Ninf-G Client passes the filename to Invoke Server as an attribute for the JOB CREATE request.
e Invoke Server outputs the stdout/stderr of the Ninf-G Executable to the file.
e The Ninf-G Client outputs the contents of the file to the stdout/stderr.

last update : $Date: 2006/09/20 04:57:42 $

11. Known problems

This section describes known problems in Ninf-G Version 4.2.5.

11.1 Problems related to the Globus Toolkit 4.2.

11.2 Problems related to the Globus Toolkit

11.3 Problems related to environments (OS, Compiler, Architecture, etc.)
11.4 Problems related to flavors (especially for non-thread flavor)

11.5 Problems related to version compatibility

11.6 Problems related to NAREGI SS

11.7 Other problems

e 11.1 Problems related to the Globus Toolkit 4.2
o 11.1.3 If GT4.2 is used, Invoke Server GT4py fails for invocation of remote processes.
o 11.1.2 Ninf-G Client and Executables may abort when they close connections.
o 11.1.1 Ninf-G Client may abort when it queries to MDS4 server.
e 11.2 Problems related to the Globus Toolkit
11.2.15 'authonly' for 'crypt' attribute is not available for Java Client.
11.2.14 Ninf-G Client built as nonthread flavor sometimes freezes when 'crypt' attribute is set to 'authonly’.
11.2.13 refresh credential causes segmentation fault.
11.2.12 Authentication only may cause freezes with Non Thread flavor.
11.2.11 Java Client does not work with authentication only.
11.2.10 WS GRAM Service on Mac OS X is not available for Ninf-G.
11.2.9 Ninf-G Client returns 1 as an exit code when it is terminated by signal.
1.8 Invoke Server GT4py for GT 4.0.1 WS GRAM does not work correctly on Solaris.
2.7 Functions for initialization of function/object handles are MT -unsafe if Ninf-G is built with GT4.
.2.6 client timeout does not work for MDS4 if it uses HTTP protocol.
2.5
2.4
2.3

O OO0 O0OOOOOOO OO

Ninf-G Client may cause segmentation faults on [A64 or AMD64.
ava WS container can not accept many simultaneous RPCs.
Refresh credential does not work with GT4.0.1 WS GRAM.
o 11.2.2 Encryption may cause freezes with Non Thread flavor of GT3 or later.
o 11.2.1 Ninf-G Client freezes if an unknown host is specified as a server.
e 11.3 Problems related to environments (OS, Compiler, Architecture, etc.)
o 11.3.8 grpc_get info np() returns incorrect CPU time.

o 11.3.7 Ninf-G Client does not terminate if exit() is called in a signal handler.

o 11.3.6 PGI compiler causes syntax-error on stub file generation from IDL.
o 11.3
o11.3

.5 Invoke Server GT4py on AIX 5.2 requires patch for Python.
.4 Invoke Server GT4py doesn't work with /usr/bin/python on Mac OS X.
o 11.3.3 Assembler may detect warnings when optimization is enabled.
o 11.3.2 Java Client sometimes fails when running large -scale applications on Windows.
o 11.3.1 dcomplex type is not available with gcc-2.96 on IA64 platform.
e 11.4 Problems related to flavors (especially for non-thread flavor)
o 11.4.4 Invoke Server is not supported for non-thread flavor.
o 11.4.3 Job start timeout feature is not completely supported for non-thread flavor.
o 11.4.2 Refresh credentials and Session timeout feature is not supported for non-thread flavor.
o 11.4.1 heartbeat detection by Ninf-G Client is not supported for non-thread flavor.
e 11.5 Problems related to version compatibility
o 11.5.2 "TCP connect retry" function is not supported by Ninf-G 2.3.0 and prior versions.
o 11.5.1 backend=MPI may cause error between different versions of Ninf-G.
e 11.6 Problems related to NAREGI SS
o 11.6.1 Ninf-G Executable invoked using Invoke Server NAREGISS may not be able to create temporary files.
e 11.7 Other problems
o 11.7.2 The hostname attributes in <CLIENT> section in the client configuration file may not be set appropriately.
o 11.7.1 Ninf-G Executable may not be died if MPI is specified as backend.

11.1 Problems related to the Globus Toolkit 4.2.
e 11.1.3 If GT4.2 is used, Invoke Server GT4py fails for invocation of remote processes.
This problem is due to the bug of GT4.2.

This problem can be avoided by configuring Java WS Core. Add "publishHostName" parameter to <globalConfiguration> in
$GLOBUS_LOCATION/etc/globus_wsrf core/server-config.wsdd. Set the value of "publishHostName" to "true".

e 11.1.2 Ninf-G Client and Executables may abort when they close connections.
If Ninf-G Client is built with GT4.2, Ninf-G Client and Executables may abort when their connections are closed.
This problem is due to the bug of GT4.2.

e 11.1.1 Ninf-G Client may abort when it queries to MDS4 server.

If Ninf-G Client is built with GT4.2, Ninf-G Client may abort when it queries to MDS4 server.

This problem is due to the bug of GT4.2 (Bug# 6268)

11.2 Problems related to the Globus Toolkit
e 11.2.15 "authonly' for 'crypt' attribute is not available for Java Client.
"authonly’ is not available for Java Client.
This problem is due to the bug of GT4 (Bug# 4669)
e 11.2.14 Ninf-G Client built as nonthread flavor sometimes freezes when 'crypt' attribute is set to 'authonly’.
Ninf-G Client built as nonthread flavor sometimes freezes when 'crypt' attribute is set to 'authonly'.
This problem is due to the bug of GT4 (Bug# 4354)
e 11.2.13 refresh_credential causes segmentation fault.
Refresh credential causes Segmentation fault on GT4.
This problem is due to the bug of the GT4 (Bug #4620).
e 11.2.12 Authentication only may cause freezes with Non Thread flavor.
Authentication only may cause freezes with Non Thread flavor though authentication only works fine with Pthread flavor.
This problem is due to the bug of GT4 (Bug# 4354).
e 11.2.11 Java Client does not work with authentication only.
Java Client does not work with authentication only.
This problem is due to the bug of GT4 (Bug# 4669).
e 11.2.10 WS GRAM Service on Mac OS X is not available for Ninf-G.
Ninf-G Client cannot invoke Ninf-G executables via Invoke Server GT4py / WS GRAM on Mac OS X.
This problem is due to the bug of the GT 4 (Bug# 4321).
e 11.2.9 Ninf-G Client returns 1 as an exit code when it is terminated by signal.
Ninf-G Client returns an exit code 1 in the following case.
o Ninf-G Client is terminated by a signal after grpc_finalize().
o ii[‘nh(jle signal sent to the Ninf-G Client is either SIGINT, SIGTERM, or SIGHUP.
This problem occurs only when Ninf-G Client uses pthread flavor of GT4. This is due to the bug of GT4 (Bug# 4287, 4294).
e 11.2.8 Invoke Server GT4py for GT 4.0.1 WS GRAM does not work correctly on Solaris.
Initializing Function/Object handles using Invoke Server GT4py for GT 4.0.1 WS GRAM does not work correctly on Solaris.
This problem is due to the bug of GT 4.0.1 (_Bug# 4275).
e 11.2.7 Functions for initialization of function/object handles are MT-unsafe if Ninf-G is built with GT4.

Functions for initialization of function/object handles (e.g. grpc_function_handle_init()) are MT-unsafe if Ninf-G is built with GT4 and
Ninf-G Client does not use Invoke Server.

Thus Ninf-G Client may not work correctly, if multiple threads initialize function/object handles simultaneously.
This problem is due to the bug of GT4 (_Bug# 3942).
This problem has been fixed on Globus Toolkit Version 4.0.2 or later.

e 11.2.6 client_timeout does not work for MDS4 if it uses HTTP protocol.

If client_timeout is specified for MDS4 with HTTP protocol, Ninf-G client will freeze when it will reach to the timeout time. This bug is
due to the bug of GT 4.0.1 (_Bug# 4157).

By default, Ninf-G uses HTTPS protocol which does not cause this problem.
e 11.2.5 Ninf-G Client may cause segmentation faults on IA64 or AMDG64.
Ninf-G Client may cause segmentation faults if it meets the following conditions.
o Version of the Globus Toolkit is 4.0.1.

o SuSE Linux runs on [IA64 or AMD64.
o Ninf-G is configured with --with-mds2 option.

This problem is due to the bug of the GT 4.0.1 (_Bug# 3921).
e 11.2.4 Java WS container can not accept many simultaneous RPCs.

Java WS container causes "OutOfMemoryError" and outputs the following message when it receives many simultaneous requests for
RPC.

ERROR container.ServiceThread

[ServiceThread-11599, run:306] Run out of heap (server level)

java. lang.OutOfMemoryError

ERROR container.ServiceThread

[ServiceThread-11551, doFault:701] Run out of memory (application level)
java. lang.OutOfMemoryError

In order to avoid this problem, increase the maximum heap size of the JVM when running the container.
It is described in the documentation of "GT 4.0: Java WS Core" , "4.1.2. Recommended JVM settings for the Java WS Core
container".

e 11.2.3 Refresh credential does not work with GT4.0.1 WS GRAM.

Due to the bug #3448, refresh credential does not work in GT4.0.1 WS GRAM. Bug is in ReliableFileTransferResource class and please
refer ViewCVS for more details.

o http://viewcvs.globus.org/viewcvs.cgi/ws-transfer/reliable/service /java/source/src/org/globus/transfer/reliable/service
/ReliableFileTransferResource.java

e 11.2.2 Encryption may cause freezes with Non Thread flavor of GT3 or later.

Encryption may cause freezes with Non Thread flavor of GT3 (Globus Toolkit Version 3) or later though encryption works fine with
Pthread flavor of GT3 or later.

This problem is due to the bug of GT3 or later (Bug# 4354).

e 11.2.1 Ninf-G Client freezes if an unknown host is specified as a server.
Ninf-G Client freezes if it tries to create a function/object handle for an unknown host whose hostname can not be resolved. This
problem is caused by the bug of the Globus Toolkit Version 2 library compiled with pthread flavor. The library compiled with non thread

flavor does not cause this problem and the bug was fixed for the Globus Toolkit Version 3 or later.

This problem has been fixed on Globus Toolkit Version 3.2 or later.

11.3 Problems related to environments (OS, Compiler, Architecture, etc.)

e 11.3.8 grpc_get_info_np() returns incorrect CPU time.

grpc_get_info_np() returns incorrect CPU time if Ninf-G is built with pthread flavor on Solaris and Linux which use not NPTL but
linuxthreads.

e 11.3.7 Ninf-G Client does not terminate if _exit() is called in a signal handler.

Ninf-G Client does not terminate if _exit() is called in a signal handler. This problem occurs if Ninf-G Client is built with pthread flavor
on Linux which uses not NPTL but linuxthreads.

If the version of Linux kernel is 2.6 or later, thread library is usually NPTL and should not cause this problem.

For glibc 2.3.2 or later, you can use getconf command to confirm the name of the thread library.

% getconf GNU LIBPTHREAD VERSION
linuxthreads-0.10

Otherwise, the following command prints the name of the thread library.

% “1dd /bin/ls | grep ’libc.so’ | awk *{print $3}"~ |¥
egrep —i 'nptl|threads’

e 11.3.6 PGI compiler causes syntax-error on stub file generation from IDL.

ng_gen command generates C source files for stub programs from IDL. Prior to generating the C source files, the IDL file is processed
by C pre-processor (CPP). CPP command is detected when the Ninf-G is configured.

PGI compiler may generate illegal C source files when it is used as CPP. Here is an example.

Before CPP
Globals { #include <stdio.h> }

After CPP
Globals { # include < stdio . h >}

(Unexpected space characters are included before and after the period.)

There are 2 ways to avoid this problem.

1. Use --no-cpp Or --with-cpp option when executing ng_gen.

ng_gen has options to skip CPP or to change CPP.

% ng_gen --no-cpp target.idl

--no-cpp option skips pre-processing and it is effective only when the pre-processor macros are not used in the IDL file.

% ng gen —-with-cpp="gcc -xc —-E” target.idl

--with-cpp option specifies CPP command. In this example, macros in the IDL file are expanded by GCC pre-processor, but
pre-processing and compilation of stub programs are performed by PGI compiler.

2. Modify the IDL file.
For quotation of the file name, use double-quotes ("stdio.h") instead of less-than and greater-than (<stdio.h>).
e 11.3.5 Invoke Server GT4py on AIX 5.2 requires patch for Python.

On AIX 5.2, Python does not work correctly due to a bug of Python. Ninf-G provides a patch for this bug and it is included in
ng-4.x.x/external/python_aix_patch directory in the Ninf-G package. See README in the directory for more details.

e 11.3.4 Invoke Server GT4py doesn't work with /usr/bin/python on Mac OS X.

Invoke Server GT4py will exit immediately if /usr/bin/python is used on Mac OS X. This problem can be avoided by using python
2.4.2 built from source bundle.

e 11.3.3 Assembler may detect warnings when optimization is enabled.

Assembler may detect warnings when optimization is enabled with GCC Version 3.2.2 or prior on Itanium2.
The warning message is as follows:

cc -Wall -02 <snip> -c -0 ngclSession.o ngclSession.c

/tmp/ccMDS56n, s: Assembler messages:

/tmp/ccMDS56n,s:10125: Warning: Use of “mov’ may violate WAW dependency “GR%, %in 1 - 127" (impliedf), specific resource number is 14
/tmp/ccMDS56n.s:10124: Warning: This is the location of the conflicting usage

/tmp/ccMDS56n.s:10396: Warning: Use of “mov’ may violate WAW dependency “GR%, %in 1 - 127" (impliedf), specific resource number is 14
/tmp/ccMDS56n. s:10395: Warning: This is the location of the conflicting usage

cc -Wall -02 <snip> -c -0 ngStream.o ngStream.c

/tmp/cc35sx1T.s: Assembler messages:

/tmp/cc35sx1T.s:2893: Warning: Use of 'mov’ may violate WAW dependency 'GR%, %in 1 - 127" (impliedf), specific resource number is 14

/tmp/cc35sx1T,s:2892: Warning: This is the location of the conflicting usage

This problem is reported to GCC bugzilla.
(http://gcc.gnu.org/bugzilla/show_bug.cgi?id=7908)
This problem has been fixed on GCC Version later than 3.2.2.
e 11.3.2 Java Client sometimes fails when running large-scale applications on Windows.
On Windows, ServerSocket sometimes fails to accept requests for connection from Ninf-G Executables if it receives many (about 10 or
more) requests at the same time.
This should be an Windows-specific problem since it does not appear on Linux or Solaris.
Use Linux or Solaris for large -scale applications.
e 11.3.1 dcomplex type is not available with gcc-2.96 on IA64 platform.
dcomplex variables is not available if gcc-2.96 is used on IA64 platform.

Although compilation of Ninf-G Client program will be succeed, the Ninf-G client program will be terminated with an error.
In order to avoid this problem, other version of gcc should be used.

11.3 Problems related to flavors (especially for non-thread flavor)
e 11.4.4 Invoke Server is not supported for non-thread flavor.
The Invoke Server feature in Ninf-G Client is not supported for non-thread flavor.
e 11.4.3 Job start timeout feature is not completely supported for non-thread flavor.

Job start timeout feature (in <SERVER> section in Client configuration file and handle attributes) does not work with non-thread flavor
in the following case.

o The first RPC after initializing the function handle is called with setting argument_transfer attribute or session attribute to copy or
nowait.
e 11.4.2 Refresh credentials and Session timeout feature is not supported for non-thread flavor.

The Refresh credentials (in <CLIENT> section in client configuration file) and Session timeout (RPC timeout) (in <FUNCTION_INFO>
section in client configuration file) feature in Ninf-G Client is not supported for non-thread flavor.

e 11.4.1 heartbeat detection by Ninf-G Client is not supported for non-thread flavor.

Heartbeat detection by Ninf-G Client is not supported for non-thread flavor. In order to detect the heartbeat from Ninf-G Executables,
use pthread flavor for Ninf-G Client.

Note: Sending heartbeat by Ninf-G Executables is supported for both pthread and non-thread flavors.

11.4 Problems related to version compatibility
e 11.5.2 "TCP connect retry" function is not supported by Ninf-G 2.3.0 and prior versions.

Ninf-G 2.4.0 provides a new capability to retry to establish a TCP connection between the Ninf-G Executable and the Ninf-G Client if
the Ninf-G Executable fails to connect to the Ninf-G Client.

This is a new capability which is not supported by Ninf-G 2.3.0 and prior versions. Although this capability will be provided in the
future release of Ninf-G, be sure that it will cause a problem if the version of Ninf-G on the client is 2.4.0 or later and the version of

Ninf-G on the server is 2.3.0 or prior.
This problem can be avoided by setting tcp_connect_retryCount to 0 on the <SERVER> section of client configuration file.
e 11.5.1 backend=MPI may cause error between different versions of Ninf-G.

Using different versions of Ninf-G on a client and servers may cause an error if MPI is used as backend of a remote executable.
It is recommended to use the same version of Ninf-G on a client and servers.

11.5 Problems related to NAREGI SS
e 11.6.1 Ninf-G Executable invoked using Invoke Server NAREGISS may not be able to create temporary files.

When the job is invoked by the function for initializing an array of function/object handles(grpc_function_array_handle_np() etc.) and
Invoke Server NAREGISS is used, environment variable TMPDIR in the Ninf-G Executable may be set to directory which does not
exist. Thus, Ninf-G Executable may not be able to create temporary files.

This problem can be avoided by specifying "tmp_dir" attribute in Ninf-G Executable configuration file.

11.6 Other problems
e 11.7.2 The hostname attributes in <CLIENT> section in the client configuration file may not be set appropriately.

The hostname attribute in <CLIENT> section in the client configuration file may not be set appropriately if globus_libc_gethostname() is
called before grpc_initialize().

e 11.7.1 Ninf-G Executable may not be died if MPI is specified as backend.

When a Ninf-G Client is terminated by SIGTERM or SIGINT, Ninf-G Executable may not be died if MPI is specified as backend.
If you want to use MPI and terminate a Ninf-G Client by SIGTERM or SIGINT, please use Non Thread flavor at remote side. However,

Ninf-G Executable may not be died until a remote function is completed.

last update : $Date: 2008/10/14 03:52:29 $

