
1

National Institute of Advanced Industrial Science and Technology

Preliminary Study of A Task Farming API
over The GridRPC Framework

Yusuke Tanimura, Hidemoto Nakada
Yoshio Tanaka, and Satoshi Sekiguchi

National Institute of Advanced Industrial
Science and Technology (AIST)

8th International Conference/Exhibition
on High Performance Computing

in Asia Pacific Region

2

GridRPC
RPC mechanism for the grid computing
A programming model for the grid applications

The API is being standardized in the working group of GGF.
An end-user API is defined and available on two systems.
A middleware API is being discussed.

Reference implementation: Ninf -G and GridSolve
Task parallel programming with well-known RPC semantics
Easy to treat a server-side fault because of 1-N model

Client

func()
func()

func()

func()

Task parallel computation

for(i=0; i<N; i++){

grpc_call_async()
:

3

GridRPC programming

grpc_init() Library initialization
gprc_function_handle_init(handle, host, func) Create a handle

:
for(i=0; i<N; i++) (Loop)

gprc_call_async(handle, A, B, C) Invoke asynchronous RPC
:

grpc_wait_all() Wait all RPCs are completed
:

grpc_function_handle_destruct() Destruct each handle
grpc_finalize() Library finalization

A typical GridRPC program (with the end-user API)

Save time to develop applications using GridRPCAPI
Machine heterogeneity is wrapped by the library.
Data communication is wrapped by the library.
A client program written in the standard API is portable.

4

GridRPC v.s. MPI
GridRPC

task parallel
client/server
GridRPC API
dispensable
good
available
can be dynamic
easy to gridify

existing apps.

parallelism
model
API
co-allocation
fault tolerance
private IP nodes
resources
others

MPI
data parallel
SPMD
MPI
indispensable
poor (fatal)
unavailable
static＊
well known
seamlessly move

to Grid

* May be dynamic using process spawning

5

Case studies until today
Tests with real science

Scalability: Multi-sites simulation using 500 CPUs in SC ’03
Long-time execution: Routine-based experiment on the
Asia Pacific Grid testbed for 3 months in 2004

The client could continue to run for a week.

Scalability + Long-time execution
Simulation with 1800 CPUs for 10 hours just before SC ’04
Simulation with 768 CPUs for 4.7 days just before SC ’05

Lessons learned
Needed to implement error handling, enabling heartbeat,
background recovery, and remote re-initialization
More sophisticated API could be provided.

Automation in task assignment and fault recovery
Higher-level APIs rather than the end-user API of the GridRPC

6

Our purpose
Design and implement a high-level API
(TFM API) library to develop production-
quality applications
Give feedback to standardizing process

Show essential functionality for implementing a high-
level API library

Focus on Task Farming (TFM)
Execute a single program in parallel while changing
input data and parameters
Easy to describe these 3 points by the TFM API

Set input data and parameters range
Submit tasks
Receive results

2

7

Position of TFM API
TFM API targets on client-side programming

A user don’t have to care about remote side.

TFM API is implemented over the GridRPC
framework to work on any GridRPC systems.

Client Server

Information service

Physical resource

GridRPC API

Each system’s library

TFM API

System-specific
protocol

Physical resource

Each system’s library

Application

Application Application

8

Users’ requirements
Automatic task assignment to the machine

Scheduling by performance and stability
Ex. Assignment priority, duplicated task submission

Fault-tolerant mechanism inside of the library
Multiple retries until the task execution succeeds
Automatic recovery of the remote program

Simple API to program parameter generation
and result analysis for TFM application

Higher tools (Ex. TFM on Matblab) should be implemented
for the specific application.

Ex. Interactive task execution, parameter generation

API for initializing a TFM environment

9

Proposed TFM library
Support automatic task assignment

Measured execution time reflects on the next assignment.

Support automatic tuning of task window
The window is tuned so that the total execution time will be minimum.
Users can specify MAX for limited memory capacity

If users want, they can specify the host by ID.

Support task completeness
Multiple retries until the task execution succeeds

Support duplicated submission
One of the two same tasks will succeed.

Support automatic recovery of the remote program
Periodical check and recovery in background

Support automatic initialization of the remote program
Initialization method is saved with data in the library for the
recovery operation

10

When a fault happens …
A failed task is resubmitted to another host.
A failed server is invoked and initialized by
“Initialization method” saved in advance.

Client

Server

Init. method

Calc. method

Server A

Save Init.
method at
invocation

Table of server status
for task assignment

Server B

Server C

Server D
Call Init. method
at recovery

Resubmission

Try recovery

11

Proposed TFM API (1)
Initialization / finalization of TFM API library

int grpcg_init(char * conf, sched_attr_t * sched, ft_attr_t * ft);
int grpcg_fin();

Invoke a remote program (Ninf-G server)
int grpcg_remote_init(int num_pe, char * func, …);

All programs can have the same Initialization method.

int grpcg_remote_init_n(int server_id, int num_pe, char * func, …);
Each program can have a different initialization method with an ID.

Terminate a remote program
int grpcg_remote_fin(int num_pe);
int gprcg_remote_fin_n(int server_id, int_num_pe);

12

Proposed TFM API (2)
Task submission

int grpcg_submit(char * func, …);
int grpcg_submit_n(int server_id, char * func, …);

Specify a target host of the task by server_id

int grpcg_submit_r(void * ref, char * func, …);
Set a pointer to the task for post -process

int grpcg_submit_nr(int server_id, void * ref, char * func, …);

Wait for task completion
int grpcg_wait_all ();
int grpcg_wait_any(int * task_id, void ** ref);

Task cancellation
int grpcg_cancel(int task_id);

3

13

Sample program using TFM API

:
rc = grpcg_init(“server.list”, &sched, NULL);

:
grpcg_remote_init(NUM_PE, NULL);

:
for(i=0; i<NUM_TASK; i++){

grpcg_sumit(“SP.S”, “SP”, …, &i, &width, &depth, …);
}
rc = grpcg_wait_all();

grpcg_remote_fin(NUM_PE);
grpcg_fin();

:

Case: ED code of NAS Grid Benchmark

Invoke a remote
program without the
initialization method

Submit a task without
specifying the host
(If a fault happens,
the task will be
resubmitted to
anywhere else.)

Initialization parameter of SP.S

14

Implementation
1. Prepare common components

Remote program (GridRPC server) management
Task management
Fault detection & background recovery of servers

2. Implement TFM API

Use of Middleware API of GridRPC and Ninf-G
extensions

Argument Array (Argument Stack) API
Remote object (Temporary storage function on remote)
API to retrieve execution information of each RPC
Complete non-blocking data transfer
Invocation of multiple remote programs by one call

15

Status mgmt. of task and server
Servers are periodically sorted in the Idle pool.
Down status is managed by each Handle Array.

Because recovery is operated by each Handle Array

Initializing Idle Tasking

Down
Cluster 1 Cluster 2 Cluster 3

Task assignment

A failed task is queued
again and resubmitted.

16

Use of Argument Array API
Provided a new API (TFM API) over standard RPC calls

Ninf-G (Ver. 2.3) provides the Argument Stack API that will be
redefined as the Argument Array API. The Argument Array API
will be able to treat va_list.

int grpcg_submit (char * func, …){
:

va_start(ap, func);
grpc_arg_array_init_with_va_list (<handle>, arg_array, ap);
va_end(ap);

:
}

int grpcg_i_dispatch(){
:

grpc_call_arg_array_async(<handle>, &session_id, arg_array);
:

}

Create arg_array from va_list

Submission

Execution

Stored arguments
are taken over.

Handle is for checking
arguments data type.

17

Feedback to GridRPC-WG
Some extensions like that Ninf-G provides
should be standardized in the GridRPC.

API to retrieve execution information on remote
The information is useful for load balancing.

Ex. Transfer speed of arguments data, calculation cost

Timing of data transfer
Complete non-blocking transfer should be provided.

The TFM library can implement optimized transfer.

“Arguments copy” function should be
provided in the Argument Array API.

Reason 1: A user need to be careful not to rewrite the
input data for the task.
Reason 2: It is difficult to implement duplicate task
submission.

18

Summary
Designed and implemented the Task Farming
API library over the GridRPC

Based on the end-user API that is almost standardized
Used the Argument Array API that is still being discussed
Used the Ninf-G extensions that is not available in other
GridRPC systems

Revealed essential functionality to implement
a higher-level API library such as TFM library

Some of them should be standardized in the GridRPC.
Specially, the Argument Array API would be useful in
many cases.

