
The Ninf Portal
An Automatic Generation Tool for Grid Portals

Toyotaro Suzumura
Tokyo Institute of Technology

and Japan Society for the
Promotion of Science

Hidemoto Nakada
National Institute of Advanced
Industrial Science and Tokyo

Institute of Technology

Masayuki Saito
Tokyo Institute of Technology

Satoshi Matsuoka
Tokyo Institute of Technology

and National Institute of
Informatics

Yoshio Tanaka
National Institute of Advanced

Industrial Science

Satoshi Sekiguchi
National Institute of Advanced

Industrial Science

ABSTRACT
As the Grid proliferates as the next-generation computing
infrastructure, a user interface in the form of ”Grid Portals”
is becoming increasingly important, especially for computa-
tional scientists and engineers. Although several Grid Por-
tal toolkits have been proposed, portal developers still must
build and deploy both the user interface and the application,
which results in considerable programming efforts. We aim
to ease this burden by generating a portal frontend (that
constitutes of JSP and Java Servlets) from an XML doc-
ument for the former, and a GridRPC system, Ninf-G for
easily ”gridifying” existing applications for the latter, and
realizing their seamless integration. The resulting system,
which we call the Ninf Portal, allowed concise description
and easy deployment of a real Grid application with greatly
small programming efforts.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Programming Environments—
Interactive environments

General Terms
Design, Experimentation

Keywords
Grid Portals, Ninf-G, GridRPC, Portal, JSP, Servlet

1. INTRODUCTION
Computational Grids have emerged as a distributed com-
puting infrastructure for providing pervasive, ubiquitous ac-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JGI’02, November 3–5, 2002, Seattle, Washington, USA.
Copyright 2002 ACM 1-58113-599-8/02/0011 ...$5.00.

cess to a diverse set of resources ranging from high-performance
computers (HPC) to tertiary storage systems to large-scale
visualization systems to expensive and unique instruments
including telescopes and accelerators. However, Grid in-
frastructure only provides a common set of services and ca-
pabilities that are deployed across resources, and it is the
responsibility of the application scientist to devise methods
and approaches for accessing Grid services. For this reason,
higher-level tools in the form of ”Grid Portal” are becoming
increasingly important to more effectively take advantage of
Grid infrastructure, and in fact HotPage[1] has already been
widely used by NPACI users.
A Grid portal is defined as a web based application server
enhanced with necessary software to communicate with Grid
services and resources, so that users could access to Grid
resources from a web browser in a uniform way without the
need to install any software on their machine. In general, a
Grid portal provides application scientists with a customized
view of software and hardware resources specific to their
particular problem domain and provides a single point of
access to Grid resources they already have been authorized
to use.
A Grid portal entails a three tier architecture adopted
by general Web applications, consisting of (1) a first tier of
clients, (2) a middle tier of brokers or servers, and (3) a
third tier of object repositories, compute servers, databases,
or any other resource or service needed by the portal. The
portal should provide a set of mechanisms to allow users to
login to the Grid with single sign-on, invoke Grid applica-
tions on remote resources along with a set of data, moni-
tor/control the applications, upload/download the required
data. As such, developing a Grid portal needs some extra
tasks in addition to implementing basic features in general
Web applications.
Some research projects[2, 3] have built a helper tool to
build a Grid portal, providing a basic set of components to
be implemented in the portal. Although it might be com-
paratively more useful than building them from the scratch,
such toolkits would not be sufficient in that they do not pro-
vide mechanisms to help create a frontend user interface for
inputting data to be passed to a Grid application, and build
the application as backend.

In this paper, we propose a Grid portal construction toolkit,
what we call Ninf Portal, designed to facilitate the develop-
ment of Grid portals by automatically generating the portal
frontend that constitutes of JSP(JavaServer Pages) and Java
Servlets from an XML document and then providing Ninf-
G to build Grid applications as the backend, and evaluate
the validity by building a Grid portal for the existing Grid
application.
The rest of this paper is organized as follows. In Section
2, we review the requirements and general architecture of a
Grid portal. In Section 3, we provide an overview and design
of the Ninf Portal. In Section 4, we give an overview of the
Ninf-G system that is an essential component constituting
the Ninf Portal. In Section 5, we give a detailed explanation
on the Ninf-Portal front-end. In Section 6, we evaluate the
system building a Grid portal for the real Grid application
via the use of the Ninf Portal. Section 7 describes the related
work. Section 8 gives conclusions and future work.

2. GRID PORTAL REQUIREMENTS
In this section we review the requirements and general
architecture of a Grid portal.

2.1 Supported Services
A Grid Portal should provide the following services:

Authentication and Authorization Authentication iden-
tifies who is connecting to the server; Authorization is
what resources to permit to the user that has been
identified. A Grid portal should also provides single
sign-on mechanism that allows users to multiple re-
mote resources on the Grid after they once authenti-
cate to the portal, and should assume that users would
like to access the portal at a location where their Grid
credentials would not normally be available to them.

Uploading and Downloading A Grid portal should pro-
vide a mechanism that enables users to upload their
requisite input data to remote resources for computa-
tion, as well as enables them to download the result
data via their web browser in an intuitive way.

Job Management A Grid portal should provide a mech-
anism which allows users to manage their jobs, i.e.,
executing their Grid application programs via the web
interface in a reliable and secure way, monitoring the
status of running jobs and stopping/canceling them if
necessary.

Information Service A Grid portal should provide an in-
terface to show information on the Grid, so that users
could know what resources are available on the Grid
and which resources are matched for their application
needs.

2.2 Architecture
In general, a Grid portal is largely divided into the fron-
tend and the backend. The frontend is a web application
that shows a user interface for searching suitable computing
resources and inputting necessary data for the computation,
and handles authentication. Existing frameworks are used
as building blocks for the frontend to generate dynamic con-
tents interacting with Web servers, e.g., HTML, CGI, and

Web

browser Web

Server

Ninf-G

Client

Ninf-Portal

User

Ninf-G

Server

Ninf-G

Server

Ninf-G

Server

Servers

JSP/Servlet

Application

Description

IDL

FILE

Figure 1: Ninf Portal Architecture

Java Servlet, etc. Meanwhile, the backend is a Grid ap-
plication responsible for receiving data from the frontend
and performing computations with them on the Grid, and
is usually built on top of the Globus Toolkit. Some research
projects such as GPDK[3] and HotPage[1], have emerged as
a tool to help build the portal frontend, but no systems were
designed to facilitate the development of both the frontend
and backend.

3. THE NINF PORTAL
In this section we first describe an overview and over-
all architecture of the Ninf Portal. In the subsequent sub-
sections, we illustrate building blocks with which we have
implemented our system and then explain how our system
enables the automatic user interface generation and single
sign-on.

3.1 Overview and Architecture
To address the issues mentioned in the previous section,
we propose the Ninf Portal to facilitate the development of a
Grid portal, providing a tool to help users to build both the
frontend and the backend in a straightforward way. With
the Ninf Portal, the frontend consisting of a set of web pages,
would be automatically generated from the interface infor-
mation described in XML; the backend, a Grid application,
would be easily developed using Ninf-G to allow users to
write the Grid application if they make a local function call.
Detailed information on Ninf-G is described in Section 4.
The architecture of the Ninf Portal is shown in Figure 1.
The left boxes in the figure is a frontend server that processes
most requests by users, such as showing the entry page for
the portal, subsequent pages generated by the portal and the
user, who initiates all actions in the portal. The frontend
invokes the backend which is the right shaded box named
Ninf-G Client in the figure, along with input data specified
in the frontend.
The backend is a Grid application accessing an underlying
Grid infrastructure, Ninf-G. The application can be built as
a program executed from a command line with input/output
data specified as the arguments. Input data are specified
either by a string or a filename, and output data are specified
either by the standard output or a filename.

3.2 Technologies Employed
Since a portal frontend has the same architecture as gen-
eral web applications, we may take advantage of various

frameworks widely used for those applications such as CGI
(Common Gateway Interface), Java Servlets, JSP, etc. CGI
defines the communication semantics between Web servers
and application programs, and can be built via the use of
Perl. While in practice CGI is available at most of servers,
it has some drawbacks in terms of the process execution and
session management. The main drawback of CGI is overall
inefficiency in handling concurrent client requests. This per-
formance problem comes from extra time taken when CGI
needs to create a separate process for each user request, and
this process will be terminated as soon as the data transfer
is completed.
Meanwhile, Java Servlets is becoming an increasingly pop-
ular alternative to traditional CGI. Servlets is a server side
Java code that runs in a server application to answer client
requests. Servlets is more efficient in terms of performance
since it is loaded into the memory when called the very first
time, and the servlet remains in memory after the request is
processed, and will not be unloaded from memory until the
web server is shut down. Furthermore, the other key tech-
nology is JavaServer Pages (JSP) that allows you to write
Java codes directly in Web pages, resulting in the ability to
generate highly dynamic web applications on the fly.
The Ninf Portal employs Java Servlets and JSP as build-
ing blocks for the following reason: 1) the session manage-
ment is simple, 2) Java interface for a set of Globus services,
i.e., Java CoG Kit[4], facilitates the access for information
services on the Grid. 3) A large variety of Java API en-
ables the integration with other components such as Grid
information services.

3.3 Automatic User Interface Generation
In general, a user interface for Web applications is com-
prised of a set of HTML pages and a servlet capable of han-
dling data. In the Ninf Portal, the only task that portal
developers should perform for obtaining the user interface
is just describing an XML document, with which the Ninf
Portal automatically generates both a JSP file that creates
HTML pages on the fly and a general-purpose Java servlet
that is capable of handling data.

3.4 Single Sign-On
The authentication in the backend of the Ninf Portal, i.e.
Ninf-G, is handled via the security mechanism of the Globus
Toolkit, i.e., the GSI protocol. GSI identifies the user’s iden-
tity by credential signed by user’s certificate. The delegation
mechanism realizes single sign-on to allow users to access to
multiple resources on the Grid, after they once authenticate
to the Grid. Consequently, if a Grid portal is capable of
retrieving a user’s credential in a secure way, single sign-on
from the portal would be realized.
The straightforward way of giving a user’s credential to
a Grid portal is uploading it via a secure HTTP protocol,
HTTPS. However, if the private keys are placed on the web
server, the entire site security would be greatly threatened
by the potential vulnerability of the web server being hacked
into and the private keys compromised.
To address these issues, we have introduced an online cre-
dentials repository called MyProxy[5], which manages a set
of credentials and allow other hosts to retrieve them us-
ing username and passphrase. MyProxy has been designed
with a great consideration of security such as communica-
tion protected by the use of GSI as well as not exposing a

private key. The Java Cog Kit provides a client interface
to MyProxy and could be easily incorporated into JSP and
Servlets with which we have implemented the Ninf Portal.

4. NINF PORTAL BACKEND: NINF-G
Ninf-G is a GridRPC system which we have reimplemented
the Ninf system[6] on top of the Globus Toolkit, offering
network-based numerical library functionality via the use of
RPC technology. Parts of applications making procedure
calls can be replaced with high-performance, remote equiv-
alents in a substantially transparent manner, usually only a
small modification to the call itself, without any RPC data
types, prologue/epilogues, IDL management, etc. Figure
2 shows a snippet of a Ninf-G client program that makes a
remote call of matrix multiply on a remote server. Addition-
ally, Ninf-G provides an asynchronous invocation method to
exploit network-wide parallelism. For instance, it would be
possible to issue a request to Ninf-G, continue with the other
computation, and poll for the request later.
A library provider, who provides the numerical library
and computational resource to the network at large, would
describe the interface of the library function in Ninf IDL. For
instance, an interface description for matrix multiplication
is shown in Figure 3.
Ninf IDL is an interface description language designated
to numerical applications, the supported data type in Ninf-
G is tailored for such a purpose; for example, the data types
are limited to scalars and their multi-dimensional arrays.
On the other hand, there are special provisions in the IDL
for numerical applications, such as support for expressions
involving input arguments to compute array size, designa-
tion of temporary array arguments that need to be allocated
on the server side but not transfered, etc.
An interface description is compiled by the Ninf-G inter-
face generator to generate a stub program for each library
function described in its interface information. The inter-
face generator also automatically outputs a makefile with
which the Ninf-G remote library can be created by linking
the stub programs and library functions.
Ninf-G employs a set of Globus services: MDS, GRAM,
Globus I/O in order to invoke remote libraries as depicted
in Figure 4. The process is as follows. For those of you who
are not familiar with the Globus services, we would like you
to refer Appendix A.

Querying the argument and executable path to MDS
The Ninf-G system employs the MDS server to publish
the executable path and argument information of avail-
able remote numerical libraries. A client extracts the
information from MDS using the library name. The
result from MDS could be cached on the client side
and reused until it is expired, which reduces extra cost
for querying to MDS.

Launching the remote library via GRAM The client
library then interprets and marshals the arguments
on the stack according to the information supplied in
the previous step, and then requests the execution of
the remote library to GRAM using the obtained exe-
cutable path.

Callback from the remote library The remote library,
after executed successfully, retrieves the client infor-
mation including his IP address and port number from

double A[N*N], B[N*N], C[N*N];
....
grpc_call("sample/mmul", N, A, B, C);
....

Figure 2: Ninf-G Client Program Example

Module sample;
Define mmul(IN int N,

IN double A[N*N],
IN double B[N*N],
OUT double C[N*N])

Required "mmul_lib.o"
Calls "C" mmul(N, A, B, C);

Figure 3: Ninf IDL Example

the arguments, and then connects to the client via
Globus I/O. The communication between the client
and the remote library is continuingly done through
the port number. The port number at which the client
listens to, performs authentication and authorization
so that any programs could not connect to it without
having the appropriate certificate. As such, this mech-
anism reduces security risks including the fact that any
third parties could make a connection pretending to be
the callback.

5. NINF PORTAL FRONTEND
In section 3, we explained an overview of the overall Ninf
Portal. This section focuses on the detailed part of the Ninf
Portal frontend.

5.1 Overview
The Ninf Portal frontend handles input from users and
displays results from the backend application on the Grid.
A user can send data by (1) directly giving a string or (2)
uploading a file stored on a user’s desktop or (3) directly
writing data in the form. The portal then gives him the
result by either displaying it on the browser or specifying
the URL where it is stored. The Ninf Portal allows users to
specify these methods in Grid Application IDL described in
the next section.

ServerClient

Client

GRAM

3. Invoke

Executable

4. Connect

back using
Globus I/O

Numerical

Library

IDL Compiler

Remote Library

Executable

Generate

1. Interface

Request

2. Interface

Reply
fork

MDS
Interface

Information

LDIF Fileretrieve

IDL

FILE

Figure 4: Ninf-G Architecture

Figure 5: Frontend Architecture

5.2 Architecture
The frontend architecture is depicted in Figure 5, con-
stituting of JSP that displays a user interface and receives
input data, and a Java servlet that invokes a backend Grid
application along with the data.

JSP and Session A metadata representing a set of input
data is required in order for a data handling servlet
(described in the next section) to deal with submitted
data. A metadata includes a variety of information
such as a name of a data filed, a information on which
the data is a value or an uploaded data, etc., and will
be stored within Java codes of a JSP page.

A JSP page stores a metadata in the session, i.e., cook-
ies for the later usage. After users input necessary data
in the field of the HTML page generated by JSP, the
request would be delegated to the servlet, which later
extracts the metadata from the session, with which the
submitted data would be parsed and the backend ap-
plication, built on Ninf-G, is launched as illustrated in
Figure 5.

A session is used to share information for one user
across multiple pages while visiting a web site. In other
words, a session object is a way of retaining state for
a normally stateless HTTP web site. By default, all
JSP pages have access to the implicit session object.

Data Handling Servlet A data handling servlet is a general-
purpose servlet which handles the following service:

• reading uploaded data
• executing a Grid application
• generating a result page

When executing a Grid application, the user’s certifi-
cate, retrieved from a MyProxy server at login, must
be used to guarantee the security . The servlet would
write out the certificate to a temporary directory and
set the appropriate permission to avoid eavesdropping.
Next, the servlet executes a Grid application after set-
ting an environmental variable to the certification file.

<!ELEMENT Application (Information*,
ArgumentFormat, Argument*)>

<!ELEMENT Information (name?,location?,
manufacturer?,description?)>

<!ELEMENT name (#PCDATA)>
<!ELEMENT location (#PCDATA)>
<!ELEMENT manufacturer (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT ArgumentFormat (#PCDATA)>
<!ELEMENT Argument (type,info,

method?,comment?)>
<!ELEMENT type (#PCDATA)>
<!ELEMENT info (#PCDATA)>
<!ELEMENT method (#PCDATA)>
<!ELEMENT description (#PCDATA)>

Figure 6: Grid Application IDL Schema

5.3 Grid Application IDL
Grid Application IDL is used to describe a user interface
information of a Grid application in the form of XML and
the schema is depicted in Figure 6. The benefit of using
XML is that we could use the existing XML parsers as the
compiler. We have used a Java-based XML parser that sup-
ports the DOM (Document Object Model). In Figure 6,
the location element defines an executable path of a Grid
application; the ArgumentFormat element defines a set of
arguments to invoke the application; the Argument element
defines the name and type of each field. Multiple arguments
can be described in an arbitrary order.
A JSP page, generated from Grid application IDL, can
be largely divided into two parts. The former is HTML
codes responsible for handling input from users, and the
latter is Java codes responsible for storing metadata that
specifies the way of handling submitted data into the session.
Furthermore, type checking in the input form is handled by
JavaScript. For instance, if you input a floating point data
into the field declared as integer, that would give a caution
and enable an error detection at an earlier stage.

6. EVALUATION
In this section, we evaluate our system through the exper-
iment of building the Grid portal for the real application,
BMI (Bilinear Matrix Inequality) Eigenvalue Problem [8]
that is one of optimization problems minimizing the great-
est eigenvalue of a bi-linear matrix function, and that is a
greatly compute-intensive application as well as could be
easily parallelized. Building a Grid portal by the use of the
Ninf Portal falls into two steps: the first step is to “gridify”
the application using Ninf-G, and the next step is to gen-
erate a web interface from a Grid Application IDL. In the
preceding section, we give you more concrete description as
to what users should do at each step.

6.1 Building Grid Application
Firstly, users should build a Grid application capable of
making use of remote computational resources on the Grid,
via the use of Ninf-G that would facilitate the development
of the Grid application. Three programs are involved to
build the Grid application via Ninf-G; a client program, a
remote library, and a IDL for a remote numerical library.
Therefore, when making an application available on the Grid,
users should first divide it into them.
Meanwhile, a web interface communicates with a Grid
application by passing a set of information as the arguments.

The BMI application takes as input a string representing a
type of computation and a data file for computation, and
finally prints out the result after the computation.
A client program could be parallelly executed on multiple
servers by invoking remote libraries with an asynchronous
method called grpc call async. Although it takes a deal
of efforts to control multiple communication channels re-
quired for parallel execution, Ninf-G encapsulates its burden
so that programmers could build a distributed and parallel
application on the Grid in a straightforward way.

6.2 Writing Grid Application IDL
As mentioned in the previous section, the BMI application
needs two elements as input: a string representing a type of
problem and a file containing a configuration information,
and the standard output as output. Therefore, since stan-
dard output is set as default for showing the result, users
should describe two input information in the Grid applica-
tion IDL. Figure 7 illustrates the Grid application IDL for
BMI.
After the compiler processes the Grid Application IDL
file, a JSP file for receiving input from users would be gen-
erated. The user interface for the Grid Portal would then
be generated by deploying the JSP file at an appropriate
directory on the web server. Figure 8 shows the JSP file
automatically generated by the compiler. The enclosed part
between <% and %> is Java codes, and the first line loads
necessary Java packages related to the application. The
following lines below the fifth line, instantiate an object
of PortalApplicationDescription class representing the
metadata of the Grid application, and set it to the attribute
of the session object. Using the metadata, the data handling
servlet would invoke the application and show the result.
The part enclosed between the form tags shows the actual
input interface. Note that the information enclosed by the
Information tag in the IDL file is used for the attributes
of the form tag. As shown in the JSP file, a variety of el-
ements should be carefully described so that the JSP page
could communicate with the data handling servlet. This
burden for portal developers would be alleviated by creat-
ing JSP from Grid Application IDL via the use of the Ninf
Portal.

6.3 Execution Example
Next, we illustrate the screenshot of the actual Grid portal
in Figure 9 that is generated in the previous sections.
The left window handles the login to authenticate users
and the center window handles a set of input data from
users. This image would be drawn by JSP generated by
Grid Application IDL.
Since upload is specified in the Argument tag in the Grid
Application IDL, the generated JSP has a field for uploading
a file. The right window in Figure 9 shows the outputted
result after the computation is finished. This sample shows
the result directly on the screen, but it would be possible to
specify the way to download the result with a file.

7. RELATED WORK
To date, a variety of systems have been proposed as por-
tal construction toolkits, such as GridPort from NPACI[2],
Grid Portal Development Kit[3] from NLANR, XCAT Sci-
ence Portal [9] from Indiana University, etc.
GridPort is the most well-known toolkit widely used for

<?xml version="1.0" encoding="shift_jis"?>
<!DOCTYPE application SYSTEM

"JSPGenerator.dtd">
<Application>

<!-- Application Information -->
<Information>
<name> BMI </name>
<location>
/home/saito/work/BMIClientC/BMISolver
</location>
<manufacturer>

Kento Aida
</manufacturer>
<appdescription>

BMI Application Portal
</appdescription>

</Information>

<ArgumentFormat>
-t $type $uploadfile

</ArgumentFormat>
<!-- Arguments Information ------ -->
<!-- ----- first Argument ------- -->
<Argument>
<argname> uploadfile </argname>
<type>inputfile</type>
<info> InputFile </info>
<method> upload </method>
<description>

inputfile of data
</description>

</Argument>
<!-- ---- second Argument ------- -->
<Argument>
<argname> type </argname>
<type> string </type>
<info> type </info>
<description>

type of program
</description>

</Argument>
</Application>

Figure 7: Grid Application IDL Example

building Grid portals. The representative example is Hot-
Page, which provides users with a view of distributed com-
puting resources and allows individual machines to be exam-
ined as to status (up or down), load, etc. Besides examining
machines, users can access files and perform routine com-
putational tasks. Most of the CGI programs are built in
Perl, and users should use Perl when registering a new Grid
application. Backend application programs must be built in
Globus API, which takes a great deal of efforts for the user.
Grid Development Portal Toolkit (GPDK) is a Java-based
toolkit which provides several key reusable components for
accessing various Grid services, and provides a customizable
interface allowing scientists to perform a variety of Grid op-
erations including remote program submission, file stating,
and querying of information services from a single, secure
gateway. GPDK give users direct access to Grid services in
the form of Java Beans from JSP. However, it is not clear
that JSP would be a suitable technology to describe the
access to the Grid environment (that is often estimated to
take a relatively longer time) because the technology was
designed for web applications available for a short period
time.
Another very important project is the Indiana/NCSA Sci-
ence Portal. In this effort, portals are designed using a
notebook of typical web pages, input forms, and execution
scripts. Notebooks have an interactive script/forms edi-
tor based on JPython that allows access to other tool kits

<%@ page import="ninfPortal.*" %>
<html>
<head> <title>BMI portal</title></head>
<body>
<%

int argnumber = 2;
String argformat = "-t $type $uploadfile";
String executablepath =

"/home/saito/work/BMIClientC/BMISolver";
String args[] = {"inputfile","string"};
String namerow[] = {"uploadfile","type"};
String filemethod[] = {"upload","null"};
PortalApplicationDescription obj =
new PortalApplicationDescription(

argnumber, argformat, executablepath,
args, namerow, filemethod);

session.setAttribute("inputs",obj);
%>

 Welcome to BMI Application Portal!

<form action="/bmi/servlet/Portal"

name="MyForm" method=post
ENCTYPE="multipart/form-data"
onSubmit="return checkData(this)">

<table border = 3 align = center> <tr>
<td>InputFile</td>
<td><input type = file name = arg0></td>

</tr> <tr>
<td>type</td>
<td><input type = text name = arg1></td>

</tr> </table>
<center>

<input type = submit align = center
value = "submit">

</center>
</form>
</body>
</html>

Figure 8: Generated JSP Example

such as CoG Kit and the Common Component Architecture
Toolkit (CCAT). The drawback is its high installation cost,
with the need to install web server and application logic and
access to the Grid with multiple protocols on the client side.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have described the Ninf Portal sys-
tem that helps portal developers to build their portal in
a intuitive and straightforward way. The system alleviates
the user’s burden by automatically generating JSP pages
as portal frontend from an XML document and utilizing a
GridRPC system, Ninf-G to build Grid applications as por-
tal backend. Moreover, we confirmed the high validity of
the Ninf Portal system by practically building the Grid por-
tal for the real Grid application via the use of the system.
Future work on the system includes the following tasks:

Integrating Information Service: We do not provide an
information service which is an essential part of Grid
portals since we focus on the simplicity of program
execution from the portal. Such a service is useful
for obtaining both static and dynamic information on
software and hardware resources. We must incorporate
the service into the Ninf Portal, as well as provide a
mechanism that allows application users to view their
runs as they progress.

Building Java APIs for Ninf-G: The current implemen-
tation of Ninf-G has supported only C client interface.
The support for Java client interface is inevitable since
users could integrate Grid applications built by the

Figure 9: Execution Example

Java interface, with Java Servlets on the server side.
This would allow users to install the portal in more
straightforward way and would avoid the entire site
security hole greatly threatened by the vulnerability
with the private keys stored out of the web server.

Support for Scripting Interface: Currently, the Ninf Por-
tal only allows users to use Grid applications offered
by portal developers, but the ability to manipulate a
Grid application in the context of a portal interface
and architecture would be extremely important. One
solution would be the mechanism adopted by Indiana
XCAT Portal, that incorporates a scripting interface
into the portal so that users could build a Grid appli-
cation from the web browser. In the case of the Ninf
Portal, this could be done by the scripting interface
wrapped up with the Ninf-G Java API, and we need
to consider possible security issues since this mecha-
nism would lead to the security vulnerability, with any
malicious codes runnable on the portal.

APPENDIX

A. GLOBUS
In this appendix, we briefly review a set of Globus ser-
vices that we exploit in the Ninf-G system, i.e. GRAM,
MDS, Globus I/O, for those who are not familiar with these
technologies.

GRAM The Globus Resource Allocation Manager(GRAM)
supports remote submission of a computational re-
quest to a remote computational resource, and sub-
sequent monitoring and control of the resulting com-
putation. GSI security mechanisms are used in all op-
erations to authenticate the requestor and for autho-
rization. Authentication is performed using the sup-
plied proxy credential, hence providing for single sign-
on. Authorization implements local policy and may
involve mapping the user’s ”Grid id” into a local sub-
ject name; however, this mapping is transparent to the
user. Ninf-G employs GRAM to execute a numerical
library in a secure manner.

MDS The Globus Toolkit’s MDS provides basic mecha-
nisms for discovering and disseminating information
about the structure and state of Grid resources. The
Monitoring and Discovery Service(MDS) is the infor-
mation services component of the Globus Toolkit. MDS
uses an extensible framework for managing static and

dynamic information about the status of a computa-
tional grid and all its components: networks, com-
pute nodes, storage systems, and instruments. The
MDS uses the Lightweight Directory Access Protocol
(LDAP) as a uniform interface to such information.
Ninf-G publishes a variety of function interfaces and
allows clients to retrieve them.

Globus I/O Globus I/O is a secure communication mod-
ule which provides a uniform I/O interface to stream
and datagram style communications. The module pro-
vides a service to support nonblocking I/O and handle
asynchronous file and network events. Ninf-G employs
the module to enable the communication between the
client and the executable at the server side.

B. ADDITIONAL AUTHORS

C. REFERENCES
[1] NPACI HOTPAGE,
https://hotpage.npaci.edu/.

[2] Thomas, M., Mock, S. and Boisseau, J.: Development
of Web Toolkits for Computational Science Portals:
The NPACI HotPage, Proceedings of HPDC 9 , pp.
308–309 (2000).

[3] The Grid Portal Development kit,
http://dast.nlanr.net/Projects/GridPortal/.

[4] von Laszewski, G., Foster, I. and Gawor, J.: CoG Kits:
A Bridge Between Commodity Distributed Computing
and High-Performance Grids,A Java Commodity Grid
Kit, ACM 2000 Java Grande Conference (2000).

[5] Novotny, J., Tuecke, S. and Welch, V.: Initial
Experiences with an Online Certificate Repository for
the Grid: MyProxy, Proceedings of the Tenth
International Symposium on High Performance
Distributed Computing (HPDC-10), IEEE Press
(2001).

[6] Nakada, H., Sato, M. and Sekiguchi, S.: Design and
Implementations of Ninf: towards a Global
Computing Infrastructure, Future Generation
Computing Systems, Metacomputing Issue, Vol. 15,
No. 5-6, pp. 649–658 (1999).

[7] Foster, I. and Kesselman, C.: Globus: A
Metacomputing Infrastructure Toolkit, International
Journal of Supercomputer Applications (1997).

[8] Kento Aida, Yoshiaki Futakata, Shinji Hara:
High-performance Parallel and Distributed Computing

for the BMI Eigenvalue Problem, Proc. 16th IEEE
International Parallel and Distributed Processing
Symposium, 2002 .

[9] Krishnan, S., Bramley, R., Gannon, D., Govindaraju,
M., Indurkar, R., Slominski, A. and Temko, B.: The
XCAT Science Portal, Supercomputing 2001 (2001).

